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Abstract

Knowledge graphs (KGs) capture rich relationships between a large number of
entities. Embeddings of these structures must preserve these relationships with
high fidelity. Recently, hyperbolic embedding methods have achieved state-of-
the-art quality in graph representation learning tasks; when embedding certain
graphs, they can produce parsimonious embeddings that have higher fidelity while
using much fewer dimensions than their Euclidean counterparts. Mirroring work
in Euclidean space, we are the first to leverage trainable hyperbolic rotations, a
key notion in providing sufficiently rich representations for the complex logical
patterns found in KGs. Coupled with trainable curvature, this approach yields
improved embeddings in fewer dimensions. We evaluate our method, ROTATIONH,
on the WN18RR link prediction task; in the low-dimensional setting, we improve
on previous Euclidean-based efforts by 2.2% in mean reciprocal rank (MRR), and
in the high-dimensional setting, we achieve a new state-of-the-art MRR of 49.2%,
improving on existing methods by 1.1%.

1 Introduction

Knowledge graphs are popular data structures for representing factual knowledge to be queried
and used in downstream applications such as word sense disambiguation, question answering, and
information extraction. A common approach to encoding the entities and relationships in KGs is via
embeddings into vector spaces [12, 4} [19]; these methods have achieved promising results for many
tasks. However, preserving the complex relationships while limiting the memory use (or equivalently,
the dimensionality) of the embeddings, is an important challenge.

At first glance, these desiderata appear to be in tension with each other. The expressiveness of embed-
dings is typically improved by increasing their dimensionality, thus expanding the memory required to
store the KG. For hierarchical data, exciting recent works have proposed embedding into hyperbolic
space instead of conventional Euclidean space [13| [15]—which alleviates this tension. Hyperbolic
space embeds trees with arbitrarily low distortion in just two dimensions; this is because hyperbolic
geometry resembles a continuous version of trees. However, such works focus on embedding simpler
graphs (e.g., weighted trees) and cannot express the diverse and complex relationships in KGs.

We propose a new approach that seeks to achieve the best of both worlds——the parsimonious
representations offered by hyperbolic space, along with the rich transformations needed to encode
and infer logical patterns in KGs, previously only defined in Euclidean space. To do so, we
parametrize rotations and translations of hyperbolic space, enabling us to learn relationship-specific
hyperbolic transformations. In addition, because the optimization of hyperbolic models is known to
be challenging, we apply two recent techniques [5] to minimize this pain point: trainable curvature
and tangent space optimization. We evaluate the performance of ROTATIONH on the KG completion
task using the standard WN18RR [6, 3] dataset (Section E]) In low (32) dimensions, we improve over

Graph Representation Learning Workshop (NeurIPS 2019), Vancouver, Canada.



Euclidean-based models by 2.2% in the MRR metric. Additionally, at high (500) dimensions, we
achieve new state-of-the-art results, obtaining 49.2% MRR, improving previous methods by 1.1%.

2 Related Work

Euclidean embeddings. In the past decade, there has been a rich literature on Euclidean embeddings
for KG representation learning. These include translation approaches [3} I8, 20, [11] or tensor
factorization methods [12}121]. While these methods are fairly simple and have few parameters, they
fail to encode important logical properties (e.g., translations can’t encode symmetry).

Euclidean complex embeddings. More recently, there has been interest in learning embeddings
in complex space, as in the ComplEx [18]] and RotatE [[L6]] models. RotatE learns rotations in Ce,
which are very effective in capturing multiple logical properties. However, a downside is that these
embeddings require high-dimensional spaces, leading to high memory costs.

Hyperbolic embeddings. To the best of our knowledge, MuRP [1]] is the only method learning
KG embeddings in hyperbolic space, targeting hierarchical data. MuRP minimizes hyperbolic
distances between a re-scaled version of the head entity embedding and a translation of the tail entity
embedding. It achieves promising results using hyperbolic embeddings with fewer dimensions than
its Euclidean analogues. However, MuRP is a translation model and fails to encode some logical
properties of relationships. Furthermore, embeddings are learned in a hyperbolic space with fixed
curvature, leading to insufficient precision, and it relies on cumbersome Riemannian optimization.

3 Background and Problem Setting

Problem Setting. We have access to a training set of triples (h,r,t) € £ CV x R X V, where V
and R are entity and relationship sets, respectively. The goal in KG embeddings is to map entities
(h,t) € V x V to embeddings (en,e;) € U™ x U™V, and relationships r € R to embeddings
r,. € U™R, for some choice of space U (traditionally R), such that the KG structure is preserved.
In the link prediction task, the data is split into Epyq;p, and Epegy triples. Embeddings are usually
learned by optimizing a scoring function s : V x R x ¥V — R, which measures triples’ likelihoods.
s(+, -, ) is trained using triples in E7,.44, and the learned embeddings are then used to predict scores
for triples in Er.s:. The goal is to learn embeddings such that the scores of triples in Ep.: are high
compared to triples that are not present in £.

Review of Hyperbolic Geometry. We briefly review key notions from hyperbolic geometry; a more
in-depth treatment is available in standard texts [14]. Our hyperbolic model is the n-dimensional
Poincaré ball with curvature —c (¢ > 0): B¢ = {x € R" : |[x||?> < 1}. For each point x € B™<,
we map the tangent space 7., which provides a first-order approximation of the manifold B™“ at x,
to B™¢ via the exponential map, expS(v) = x B¢ (tanh <1_‘/§HI”2) ﬁTIVH) ; where
(1+2¢(x,y) +cllyll*)x + (L — ol [x]|*)y 0
1+ 2c(x,y) + ¢|x[]?[lyl[?

denotes the Mobius addition [7]. In contrast to Euclidean addition, it is not commutative, but provides
an analogue through the lens of parallel transport: given two points x, y and a vector v in 7.7, there is a
unique vector in 77 which creates the same angle as v with the direction of the geodesic connecting x
toy. This map is the parallel transport P¢_, _ (-); Euclidean parallel transport is the standard Euclidean
addition. Analogously, Mobius addition satisfies [7]] x ®¢ exp§(v) = exps (P§_,«(v)). Finally, the
hyperbolic distance on B™¢ has the explicit formula d°(x,y) = 2artanh(\/c|| — x ®° y||)/ /¢
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4 KG Embeddings via Hyperbolic Rotations

Our goal is to learn hyperbolic embeddings that can encode complex logical relationships. We
introduce ROTATIONH, a hyperbolic embedding model for multi-relational data. ROTATIONH
learns embeddings in hyperbolic space and models relation-specific transformations with hyperbolic
rotations (Section , followed by translations. All ROTATIONH parameters are defined in the
Euclidean tangent space at the origin and can be learned with standard Euclidean optimization
techniques (Section d.2)), which are empirically more stable than Riemannian optimization methods.
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Figure 1: Euclidean (left) and hyperbolic (right) rotations. As two points move away from the origin
in hyperbolic space, their distance approaches the sum of distances between the points and the origin.
This resembles trees, where the shortest path goes through the nearest common ancestor.

4.1 Rotations via Givens transformations

Relationships often satisfy particular properties, such as symmetry: i.e., if (Michelle Obama, married
to, Barack Obama) holds, then (Barack Obama, married to, Michelle Obama) does as well. These
rules are not universal. For instance, (Barack Obama, born in, Hawaii) is not symmetric. Creating and
curating a set of deterministic rules is infeasible; instead we parametrize and learn such properties. A
convenient vehicle to do so is rotations, which have been successfully used to encode logical properties
in complex space [[16]. We learn relationship-specific rotations using Givens transformations: 2 x 2
rotation matrices commonly used in numerical linear algebra. We assume an even number of
dimensions and parametrize rotations with block-diagonal rotation matrices of the form:

cos(f) —sin(h) @)
sin(f)  cos(0) |’

and ©, = (er,i)ie{l,..‘%} are relationship-specific parameters. Note that rotations of this form are
centered at zero and are isometries of the hyperbolic space (distance-preserving). We can therefore

directly apply this transformation to hyperbolic embeddings while preserving the underlying geometry.
We illustrate two-dimensional rotations in both Euclidean and hyperbolic spaces in Figure I}

’2

R(0©,) = diag(G(0,,1),G(0,2),...,G(0r,=)), where G(0) = [

4.2 Optimization

We let (efl),ey and (rf),cr denote entity and relationship hyperbolic embeddings respectively.
MuRP learns embeddings via Riemannian Stochastic Gradient Descent (RSGD) [2]]. In practice,
optimization in hyperbolic space is challenging, requiring the use of sophisticated techniques and
special care not to fall off the manifold. We overcome this obstacle by defining all the ROTATIONH
parameters in the Euclidean tangent space at the origin, thanks to the exponential map. In other
words, ROTATIONH optimizes Euclidean entity and relationship embeddings (eZ),cy and (r?),cr,
which are mapped to the Poincaré ball with el = exp§(eZ) and rZ = exp§(rZ).

4.3 ROTATIONH model

We have all of the building blocks for ROTATIONH, and can now provide the model architecture.
For a triple (h,r,t) € V x R x V, ROTATIONH first maps Euclidean embeddings to hyperbolic
embeddings, and applies a relation-specific rotation (Equation [2) to the head entity embedding,
followed by a hyperbolic translation (Equation [I)). The resulting scoring function is:

(h.7,t) = —de((R(Or)exvl (ef)) & expf(rF), exp (eF))? + br + by, 3
where (b, ),cy are entity biases which act as a margin in the scoring function [[17, [1]]. The model
parameters are then {(0,.),er, (rZ),er, (£)vey, (by)vey}, which are all Euclidean parameters
and can be learned using standard Euclidean optimization techniques. Note that we also learn the
absolute hyperbolic curvature with ¢ = Softplus(c’) € R ; as we shall see, this is critical. We train
the ROTATIONH model by minimizing the cross-entropy loss over true triples and negative triples
using negative sampling: for each positive example, we sample S negative examples by randomly
corrupting the head and the tail entities:

S

1 —s(h rt)) ( s(hy,mst )):|
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Space i Model MRR H@I H@3 H@I0

R MuRE [1] S W Y 5)
C” ComplEx-N3 [I0] 420 390 420 460 0.6 Test MRR vs. dim. on WN18RR
B™! MuRP [1 465 420 484 544 :
R” ROTATIONE 448408463 522 051
B™° ROTATIONH 470 428 487 547
TransE [3] 226 - - 501 0.4¢
R DistMult [21] 430 390 440 490 =03
ConvE [6] 430 400 440 520 =
MuRE [T] A75 436 487 554 02l
ComplEx [18] 440 410 460 510 - — RotationE
cr ComplEx-N3 [I0]  .480 - - 570 0.1k — RotationH (Fixed curvature)
RotatE [16] 476 428 492 S71 — RotationH (Trainable curvature)
B™! MuRP [1] A81 440 495 566 0.0 . - =
R ROTATIONE 07T 436 312385 10! 10° 10°
B™° ROTATIONH 492 443 510 586 embedding dim.

Table 1: Link prediction results for WN18RR, Figure 2: ROTATIONH offers improved perfor-
for low dimensions (n = 32, top five rows), and mance at low dimensions; at high dimensions, fixed
high dimensions (n > 200, bottom rows). Best curvature degrades performance, while trainable
in bold and best published underlined. curvature recovers the Euclidean space.

5 Link Prediction Experiments

We hypothesize that when the data has a hierarchical structure, ROTATIONH obtains better repre-
sentations and allows for improved downstream performance at fewer dimensions than comparably
expressive Euclidean models. We also expect ROTATIONH to improve on translation-based hyperbolic
models like MuRP.

Dataset. We evaluate ROTATIONH on the link prediction task on the WN18RR dataset, often used as
a competition benchmark. WN18RR is a subset of WordNet containing relationships between words,
and has a natural hierarchical structure, e.g., (car, hypernym of, sedan). WN18RR consists of 40,943
entities and 11 relations, with a total of 86,835 train, 3034 validation and 3,134 test triples.

Protocol. We learn hyperbolic embeddings with ROTATIONH by minimizing the loss function in
Equation[d] At test time, we use the scoring function in Equation [3to rank the correct tail or head
entity against all possible entities and compute two ranking-based metrics: (1) MRR, which measures
the mean of inverse ranks assigned to correct entities, and (2) Hits at K (H@ K, K € {1,3,10}),
which measures the proportion of correct triples among top K predicted triples. We follow the
standard evaluation protocol in the filtered setting [J3]]: all true triples in the KG are filtered out during
evaluation, since predicting a low rank for these triples shouldn’t be penalized. We implement our
model in PyTorch and will make our code publicly available. We train with Adam [9]], sweeping
hyper-parameters using the validation set over learning rate (o), dimension (n), negative sample size
(S) and batch size (B). Our best model uses o = 1073, n = 500, S = 50 and B = 500.

Results. We report link prediction results on WN18RR in Table [I| We compare ROTATIONH to
state-of-the-art methods as well as its Euclidean analogue (ROTATIONE, which is ROTATIONH for
¢ = 0). In low dimensions (top rows), ROTATIONH improves over ROTATIONE by 2.2% points in
MRR. In the high-dimensional regime (lower rows), we compare against a variety of other models,
including the recent hyperbolic (but not rotation-based) MuRP, observing that ROTATIONH achieves
new state-of-the-art results.

Dimension and Curvature. We further analyze the role of the dimension by plotting MRR versus
the embedding dimension in Figure [2] As expected, the benefit of hyperbolic embeddings (over
Euclidean embeddings) is prominent in the low-dimensional regime (n < 100), where ROTATIONH
with fixed and trainable curvature both offer better performance than ROTATIONE.

In the high-dimensional regime (n > 100), we note that both ROTATIONE and ROTATIONH with
trainable curvature have similar performance, while ROTATIONH with fixed curvature does worse—
confirming the importance of trainable curvature and its impact on precision and capacity, formerly
studied in [15]. Empirically, we observe that the absolute curvature is small in high dimensions while
it is closer to one in low dimensions. We conjecture that when the dimension is sufficiently large,
Euclidean space has enough capacity to encode complex interactions between entities. ROTATIONH
performs as well or better than previous methods in both low- and high-dimensional regimes.
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