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Abstract

We propose supervised graph attention network (super-GAT), a novel neural net-
work architecture for semi-supervised node classification in graphs. While learning
(unsupervised) graph attention from the original graph attention network (GAT), we
jointly train the attention values by supervised learning with information whether
an edge exists between a pair of nodes. By giving supervision, we can assign
not only implicit weights to nodes in the neighborhood but also explicit weights
to nodes in any relation. Our model is based on GAT, and it only needs a few
additional parameters and computation. We show how super-GAT performs on
three transductive benchmark citation datasets: Cora, CiteSeer, and PubMed, and
compared to baseline models including GAT, super-GAT achieves higher prediction
accuracy for the first two datasets.

1 Introduction and Related Work

Deep neural architectures have shown excellent results in many fields [[1, 2]. In particular, graph
CNNs have shown overwhelming performance by generalizing the convolutional layers used in grid
structures to graph structures in both spectral and non-spectral ways [3} 4. |5, 16 [7, I8, 9L [10].

One important model is the graph attention network (GAT) [[L1] which uses the attention mechanism
shown to lead to a significant performance increase in various domains [[12} [13]. As attention has
been used in sequence-based tasks to help focus on relevant entities, graph attention captures which
neighbors of a specific node are important in representing the node. In both sequence and graph
learning, attention values are trained in an unsupervised manner.

Graph attention differs from conventional attention in that the model computes and learns the attention
value only for the node pairs that are linked to each other. Velickovic¢ et al. [[L1] calls this masked
attention. In addition to the explicit information that if node j is linked to node ¢, node 7 is important
to node ¢ than others, there is also implicit information that if node j is not linked to node i, j is
not important to 7. Using this implicit information, we make the attention value be predictive of
the existence of an edge between two nodes. By doing so, our attention mechanism can encode
structurally relevant elements.

We propose supervised graph attention networks (super-GAT) which takes advantage of the infor-
mation about nodes that are not linked. Super-GAT gives supervision to graph attention with binary
labels about the existence of an edge (0 or 1). Specifically, we use the attention value as input to
predict the likelihood that an edge exists between a pair of nodes. This makes the graph’s attention
to learn the explicit importance of any node pair as well as the implicit importance of nodes in
neighborhoods.

Our approach can be used to all graph-related tasks, but in this paper, we focus on the semi-supervised
node classification task in the transductive setting. We conduct experiments on three real-world
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Figure 1: Left: The computation of normalized attention c;; and the probability that an edge exists
¢;; in our model. We get €;; and «;; in the same way as GAT and calculate ¢;; by a small feed-
forward neural network with e;;. Right:. An illustration of (single-head) graph attention of node 1.
Aggregation process is equal to GAT’s, but attention between unlinked relations (e.g., node 1 and 4)
are also computed for link prediction.

citation datasets (Cora, CiteSeer, and PubMed) and show that giving supervision to graph attention
improves performance over GAT for Cora and CiteSeer.

2 Model

In this section, we describe the supervised graph attention layer and the design of the loss function.
First, we explain the original graph attention layer and its notations from [[11]]. For a given graph G =
(V,E), N = |V|is the number of nodes and F" is the number of features at layer . Graph attention
— — - - 1 .
layer takes a set of features h! = {h! hb,... hi;} Al € RF" as aninput and produces another set
of features h't! = {hll'H, hl2+1, e, hﬁ(gl}, h;“ eRF . To compute the output feature hé“, we
. . . +1 . . .
multiply the weight matrix W!+! € R X" to each input feature, linearly combine the features of
node ¢ and its first-order neighbors j € N; by normalized self-attention coefficients aﬁjl, and finally
apply a non-linear activation function o. Formally, we get h.*! = & (Z JENUL) aéjlelﬁé).

We can use various attention mechanisms suggested by prior research [[14} 12} [15 [13]], but in our
experiments, we retain the original attention mechanism of GAT:

el! = LeakyReLU ((al“)T [Wl“ﬁﬁnwl“i}ﬂ) ot =
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ZkeMu{z‘} €xp (ezk
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where a't1 € R27"" is weight parameters and || is the vector concatenation operation.

Now we introduce our model using the notations above. The key idea of super-GAT is guiding
attention values with the existence or absence of an edge between a pair of nodes. However, if
the number of nodes is large, it is not efficient to use all possible samples in the complementary
set of edges, E¢ = (V x V) \ E. So, we use negative sampling as in training word or graph
embeddings [[16, [17, 18], arbitrarily choosing a total of |E| negative samples £~ from E°. Then, we
apply feed-forward neural network f, to attention coefficients e;; to predict the existence of edges in
E U E~. Putting a sigmoid layer ¢(-) to f.(e;;), we predict the existence of an edge between node

pair (j, 1),

$ij = ¢ (feleig)) = P((J:1) € E). 2
Our optimization objective of layer [ is a binary cross-entropy loss L4, defined by
Lo= Y Lgi=o-log (1= (fe(e))) + Lia=1-logé (felel))), 3)

(4,1)eEUE~



Table 1: Statistics of the Datasets: Cora, CiteSeer and PubMed.
Cora CiteSeer PubMed

# Nodes 2708 3327 19717
# Edges 5429 4732 44338
# Features/Node 1433 3703 500

# Classes 7 6 3

# Training Nodes 140 120 60

# Validation Nodes 500 500 500

# Test Nodes 1000 1000 1000

where 1. is an indicator function. To give the regularization effect from randomness, we use a subset
of £ U E~ sampled by probability p. at each training iteration. Also, we can simply employ K
multi-head attentions to our method by using the mean of each head’s loss value as an input of f..

1,k >1,(k 1k -
fe(eéj) = % ZkK:1 fe(eij( ))a hi( ) = a (Zje./\/'iu{i} a; ( )Wl’(k)hé' 1) . 4)

Finally, we combine multi-class cross-entropy loss on node labels (Ly/), supervised graph attention
losses for all L layers (£4,), and L2 regularization loss, with hyperparameters Az, A respectively.

L="Ly+Ag- 0 L+ X [[W]a. (5)

Computational complexity of super-GAT and GAT The super-GAT has no difference in space
and time complexity compared to GAT. Since e;; is a scalar value, we only need two extra parameters
(one for weight, one for bias) per layer for f.. To compute L%, for a single attention head, we need
additional operations in terms of O(|E~| - F!*1 + | E|). Like GAT, space and time complexity is
linear in the number of heads K, and computation of each head can be parallelized.

3 Experiments

Datasets We use three standard benchmark datasets for semi-supervised node classification tasks:
Cora, CiteSeer, and PubMed [19,20]. Each of these datasets consists of a single graph linked by docu-
ment citations. For all datasets, we follow the transductive experimental setup and train/validation/test
split of GAT [[11]]. We use 20 samples per class for training, 500 samples for validation, and 1000
samples for test. See Table|l|for details.

Experimental setup We follow most of the same experimental setup from GAT [11]. All param-
eters are initialized by Glorot initialization [21] and optimized by Adam [22] with a learning rate
of 0.005 (Cora and CiteSeer) and 0.01 (PubMed). L2 regularization, dropout [23] to input features
and attention coefficients, and early stopping on validation loss and accuracy are applied. For Cora
and CiteSeer, we employ a two-layer super-GAT with eight attention heads for the first layer and
one attention head for the second layer. We use exponential linear unit (ELU) [24] as a non-linear
activation o. For PubMed, we set the number of attention heads as eight for the second layer. Other
settings are the same as architectures for Cora and CiteSeer. One setup that we cover but GAT does
not is f.. For this, we use a two-layer unit-width FNN, that is f,(z) = wa - (w1 - & + b1) + ba.

Baselines We compare our method against three baseline models. They are feed-forward neural
network on node features (MLP), graph convolutional neural network (GCN) [6]], and graph attention
network (GAT) [[L1].

Hyperparameters There are at most four hyperparameters. We fix the dropout probability pg4 to
0.6 and the edge sampling probability p. to 0.9. Mixing coefficients of losses, A and Ag, are tuned
by Bayesian optimization for a set of random seeds (30 for Cora/CiteSeer and 20 for PubMed) with
100 random explorations and a total of 800 steps.

Implementation All models are implemented in PyTorch [25] and PyTorch Geometric [26]].



Table 2: Summary of our model and baselines’ accuracy for Cora, CiteSeer and PubMed.

Model Cora CiteSeer PubMed
MLP 55.1% 46.5% 71.4%

GCN 81.5% 70.3% 79.0 %

GAT 83.0+0.7% 725+07% 79.0 £0.3%

Super-GAT (ours) 834 +0.6% 73.0+09% 78.5+04%

4 Results

We summarize the experimental results in Table 2] For all experiments, we measure the model
performance with classification accuracy. We report the mean and standard deviation of accuracy
after 100 runs and reuse the results introduced in prior work [6} [11]].

Our model outperforms baselines for Cora and CiteSeer datasets. For PubMed, we get 78.5% which
is slightly lower than GCN and GAT.

We also analyze the un-normalized attention value distributions of positive and negative edges. For
Cora and PubMed datasets, we draw box-and-whisker plots with un-normalized attention values from
the first layer e%j of our model and GAT in figure|3] We attach the same plots for CiteSeer in the
appendix. In these plots, we use the mean values of all attention heads and directions, in other words,

e%i,j} = 7% Zf:l(elljz(k) + e;{'(k))-

We make three observations. First, super-GAT shows larger differences in mean attention values
between the positive and negative samples, compared to GAT. This is an expected result of our
architecture design. Second, the attention values of super-GAT are more dispersed compared to
those of GAT. We interpret this to mean that giving supervision to graph attention lets the model
concentrate on a smaller number of nodes among the neighbors. Finally, for PubMed, there are more
negative samples that are outliers than Cora and CiteSeer, regardless of the models. These outliers
contradict our assumption that the attention value is related to the existence of edges. This might
explain why our approach does not improve the performance on the PubMed dataset.
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Figure 2: Box plots of un-normalized attention values from the first layer of super-GAT and GAT
trained with Cora and PubMed datasets.

5 Conclusion and Future Work

We have introduced supervised graph attention networks, leveraging labels about edge existence
to give supervision to graph attention. Super-GAT achieved better performance than GAT in the
transductive problem through efficient training procedures without major architectural changes.

There are several ways to improve this research. Future work will cover 1) extending to node
classification in the inductive setting, 2) giving supervision to self-attention graph pooling [27] for
graph-level classification, and 3) examining the effectiveness of negative edge sampling guided by
graph statistics (e.g., node distance).
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A Box Plot about CiteSeer

As we described in the section[d we attach un-normalized attention value distribution of positive and
negative samples of CiteSeer in the appendix. See section[]for the analysis.

Super-GAT/CiteSeer GAT/CiteSeer

o o
=3 o
= ©
o o
o o
= @

o
o
]

un-normalized attention
o
o
S
un-normalized attention
_O o
o o
~] 5

o
o
o
o
o
o

positive negative positive negative
sample type sample type

Figure 3: Box plots of un-normalized attention values from the first layer of super-GAT and GAT
trained with CiteSeer datasets.
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