
Supervised Graph Attention Network for
Semi-Supervised Node Classification

Dongkwan Kim
School of Computing

KAIST
dongkwan.kim@kaist.ac.kr

Alice Oh
School of Computing

KAIST
alice.oh@kaist.edu

Abstract

We propose supervised graph attention network (super-GAT), a novel neural net-
work architecture for semi-supervised node classification in graphs. While learning
(unsupervised) graph attention from the original graph attention network (GAT), we
jointly train the attention values by supervised learning with information whether
an edge exists between a pair of nodes. By giving supervision, we can assign
not only implicit weights to nodes in the neighborhood but also explicit weights
to nodes in any relation. Our model is based on GAT, and it only needs a few
additional parameters and computation. We show how super-GAT performs on
three transductive benchmark citation datasets: Cora, CiteSeer, and PubMed, and
compared to baseline models including GAT, super-GAT achieves higher prediction
accuracy for the first two datasets.

1 Introduction and Related Work

Deep neural architectures have shown excellent results in many fields [1, 2]. In particular, graph
CNNs have shown overwhelming performance by generalizing the convolutional layers used in grid
structures to graph structures in both spectral and non-spectral ways [3, 4, 5, 6, 7, 8, 9, 10].

One important model is the graph attention network (GAT) [11] which uses the attention mechanism
shown to lead to a significant performance increase in various domains [12, 13]. As attention has
been used in sequence-based tasks to help focus on relevant entities, graph attention captures which
neighbors of a specific node are important in representing the node. In both sequence and graph
learning, attention values are trained in an unsupervised manner.

Graph attention differs from conventional attention in that the model computes and learns the attention
value only for the node pairs that are linked to each other. Veličković et al. [11] calls this masked
attention. In addition to the explicit information that if node j is linked to node i, node j is important
to node i than others, there is also implicit information that if node j is not linked to node i, j is
not important to i. Using this implicit information, we make the attention value be predictive of
the existence of an edge between two nodes. By doing so, our attention mechanism can encode
structurally relevant elements.

We propose supervised graph attention networks (super-GAT) which takes advantage of the infor-
mation about nodes that are not linked. Super-GAT gives supervision to graph attention with binary
labels about the existence of an edge (0 or 1). Specifically, we use the attention value as input to
predict the likelihood that an edge exists between a pair of nodes. This makes the graph’s attention
to learn the explicit importance of any node pair as well as the implicit importance of nodes in
neighborhoods.

Our approach can be used to all graph-related tasks, but in this paper, we focus on the semi-supervised
node classification task in the transductive setting. We conduct experiments on three real-world

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Figure 1: Left: The computation of normalized attention αij and the probability that an edge exists
φij in our model. We get ~eij and αij in the same way as GAT and calculate φij by a small feed-
forward neural network with eij . Right:. An illustration of (single-head) graph attention of node 1.
Aggregation process is equal to GAT’s, but attention between unlinked relations (e.g., node 1 and 4)
are also computed for link prediction.

citation datasets (Cora, CiteSeer, and PubMed) and show that giving supervision to graph attention
improves performance over GAT for Cora and CiteSeer.

2 Model

In this section, we describe the supervised graph attention layer and the design of the loss function.

First, we explain the original graph attention layer and its notations from [11]. For a given graph G =
(V,E), N = |V | is the number of nodes and F l is the number of features at layer l. Graph attention
layer takes a set of features hl = {~hl1,~hl2, . . . ,~hlN},~hli ∈ RF l

as an input and produces another set
of features hl+1 = {~hl+1

1 ,~hl+1
2 , . . . ,~hl+1

N },~h
l+1
i ∈ RF l+1

. To compute the output feature ~hl+1
i , we

multiply the weight matrix Wl+1 ∈ RF l+1×F l

to each input feature, linearly combine the features of
node i and its first-order neighbors j ∈ Ni by normalized self-attention coefficients αl+1

ij , and finally

apply a non-linear activation function σ. Formally, we get ~hl+1
i = σ

(∑
j∈Ni∪{i} α

l+1
ij Wl+1~hlj

)
.

We can use various attention mechanisms suggested by prior research [14, 12, 15, 13], but in our
experiments, we retain the original attention mechanism of GAT:

el+1
ij = LeakyReLU

(
(~al+1)>

[
Wl+1~hli‖Wl+1~hlj

])
, αl+1

ij =
exp

(
el+1
ij

)∑
k∈Ni∪{i} exp

(
el+1
ik

) , (1)

where ~al+1 ∈ R2F l+1

is weight parameters and ‖ is the vector concatenation operation.

Now we introduce our model using the notations above. The key idea of super-GAT is guiding
attention values with the existence or absence of an edge between a pair of nodes. However, if
the number of nodes is large, it is not efficient to use all possible samples in the complementary
set of edges, Ec = (V × V) \ E. So, we use negative sampling as in training word or graph
embeddings [16, 17, 18], arbitrarily choosing a total of |E| negative samples E− from Ec. Then, we
apply feed-forward neural network fe to attention coefficients eij to predict the existence of edges in
E ∪ E−. Putting a sigmoid layer φ(·) to fe(eij), we predict the existence of an edge between node
pair (j, i),

φij = φ (fe(eij)) = P ((j, i) ∈ E) . (2)

Our optimization objective of layer l is a binary cross-entropy loss Ll
E defined by

Ll
E =

∑
(j,i)∈E∪E−

1(j,i)=0 · log
(
1− φ

(
fe(e

l
ij)
))

+ 1(j,i)=1 · log φ
(
fe(e

l
ij)
)
, (3)

2

Table 1: Statistics of the Datasets: Cora, CiteSeer and PubMed.

Cora CiteSeer PubMed
Nodes 2708 3327 19717
Edges 5429 4732 44338
Features/Node 1433 3703 500
Classes 7 6 3
Training Nodes 140 120 60
Validation Nodes 500 500 500
Test Nodes 1000 1000 1000

where 1· is an indicator function. To give the regularization effect from randomness, we use a subset
of E ∪ E− sampled by probability pe at each training iteration. Also, we can simply employ K
multi-head attentions to our method by using the mean of each head’s loss value as an input of fe.

fe(e
l
ij) =

1
K

∑K
k=1 fe(e

l,(k)
ij), ~h

l,(k)
i = σ

(∑
j∈Ni∪{i} α

l,(k)
ij Wl,(k)~hl−1j

)
. (4)

Finally, we combine multi-class cross-entropy loss on node labels (LV), supervised graph attention
losses for all L layers (Ll

E), and L2 regularization loss, with hyperparameters λE , λ2 respectively.

L = LV + λE ·
∑L

l=1 Ll
E + λ2 · ‖W‖2. (5)

Computational complexity of super-GAT and GAT The super-GAT has no difference in space
and time complexity compared to GAT. Since eij is a scalar value, we only need two extra parameters
(one for weight, one for bias) per layer for fe. To compute Ll

E for a single attention head, we need
additional operations in terms of O(|E−| · F l+1 + |E|). Like GAT, space and time complexity is
linear in the number of heads K, and computation of each head can be parallelized.

3 Experiments

Datasets We use three standard benchmark datasets for semi-supervised node classification tasks:
Cora, CiteSeer, and PubMed [19, 20]. Each of these datasets consists of a single graph linked by docu-
ment citations. For all datasets, we follow the transductive experimental setup and train/validation/test
split of GAT [11]. We use 20 samples per class for training, 500 samples for validation, and 1000
samples for test. See Table 1 for details.

Experimental setup We follow most of the same experimental setup from GAT [11]. All param-
eters are initialized by Glorot initialization [21] and optimized by Adam [22] with a learning rate
of 0.005 (Cora and CiteSeer) and 0.01 (PubMed). L2 regularization, dropout [23] to input features
and attention coefficients, and early stopping on validation loss and accuracy are applied. For Cora
and CiteSeer, we employ a two-layer super-GAT with eight attention heads for the first layer and
one attention head for the second layer. We use exponential linear unit (ELU) [24] as a non-linear
activation σ. For PubMed, we set the number of attention heads as eight for the second layer. Other
settings are the same as architectures for Cora and CiteSeer. One setup that we cover but GAT does
not is fe. For this, we use a two-layer unit-width FNN, that is fe(x) = w2 · σ(w1 · x+ b1) + b2.

Baselines We compare our method against three baseline models. They are feed-forward neural
network on node features (MLP), graph convolutional neural network (GCN) [6], and graph attention
network (GAT) [11].

Hyperparameters There are at most four hyperparameters. We fix the dropout probability pd to
0.6 and the edge sampling probability pe to 0.9. Mixing coefficients of losses, λ2 and λE , are tuned
by Bayesian optimization for a set of random seeds (30 for Cora/CiteSeer and 20 for PubMed) with
100 random explorations and a total of 800 steps.

Implementation All models are implemented in PyTorch [25] and PyTorch Geometric [26].

3

Table 2: Summary of our model and baselines’ accuracy for Cora, CiteSeer and PubMed.

Model Cora CiteSeer PubMed
MLP 55.1% 46.5% 71.4%
GCN 81.5% 70.3% 79.0%
GAT 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%
Super-GAT (ours) 83.4 ± 0.6% 73.0 ± 0.9% 78.5 ± 0.4%

4 Results

We summarize the experimental results in Table 2. For all experiments, we measure the model
performance with classification accuracy. We report the mean and standard deviation of accuracy
after 100 runs and reuse the results introduced in prior work [6, 11].

Our model outperforms baselines for Cora and CiteSeer datasets. For PubMed, we get 78.5% which
is slightly lower than GCN and GAT.

We also analyze the un-normalized attention value distributions of positive and negative edges. For
Cora and PubMed datasets, we draw box-and-whisker plots with un-normalized attention values from
the first layer e1ij of our model and GAT in figure 3. We attach the same plots for CiteSeer in the
appendix. In these plots, we use the mean values of all attention heads and directions, in other words,
e1{i,j} =

1
2K

∑K
k=1(e

1,(k)
ij + e

1,(k)
ji).

We make three observations. First, super-GAT shows larger differences in mean attention values
between the positive and negative samples, compared to GAT. This is an expected result of our
architecture design. Second, the attention values of super-GAT are more dispersed compared to
those of GAT. We interpret this to mean that giving supervision to graph attention lets the model
concentrate on a smaller number of nodes among the neighbors. Finally, for PubMed, there are more
negative samples that are outliers than Cora and CiteSeer, regardless of the models. These outliers
contradict our assumption that the attention value is related to the existence of edges. This might
explain why our approach does not improve the performance on the PubMed dataset.

positive negative
sample type

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

un
-n

or
m

al
ize

d
at

te
nt

io
n

Super-GAT/Cora

positive negative
sample type

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

un
-n

or
m

al
ize

d
at

te
nt

io
n

GAT/Cora

positive negative
sample type

0.0

0.1

0.2

0.3

0.4

0.5

un
-n

or
m

al
ize

d
at

te
nt

io
n

Super-GAT/PubMed

positive negative
sample type

0.0

0.1

0.2

0.3

0.4

0.5
un

-n
or

m
al

ize
d

at
te

nt
io

n
GAT/PubMed

Figure 2: Box plots of un-normalized attention values from the first layer of super-GAT and GAT
trained with Cora and PubMed datasets.

5 Conclusion and Future Work

We have introduced supervised graph attention networks, leveraging labels about edge existence
to give supervision to graph attention. Super-GAT achieved better performance than GAT in the
transductive problem through efficient training procedures without major architectural changes.

There are several ways to improve this research. Future work will cover 1) extending to node
classification in the inductive setting, 2) giving supervision to self-attention graph pooling [27] for
graph-level classification, and 3) examining the effectiveness of negative edge sampling guided by
graph statistics (e.g., node distance).

Acknowledgments This research was supported by the Engineering Research Center Program
through the National Research Foundation of Korea (NRF) funded by the Korean Government MSIT
(NRF-2018R1A5A1059921).

4

References
[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436,

2015.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs, 2014.

[4] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in neural information processing
systems, pages 3844–3852, 2016.

[6] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[7] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in neural information processing systems, pages 2224–
2232, 2015.

[8] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in
Neural Information Processing Systems, pages 1993–2001, 2016.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[10] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model
cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5115–5124, 2017.

[11] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations (ICLR),
2015.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[14] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh. Attention
models in graphs: A survey. arXiv preprint arXiv:1807.07984, 2018.

[15] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Empirical Methods in Natural Language Processing, pages
1412–1421, 2015.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[17] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[18] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th international conference
on world wide web, pages 1067–1077. International World Wide Web Conferences Steering
Committee, 2015.

5

[19] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[20] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. arXiv preprint arXiv:1603.08861, 2016.

[21] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[24] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep net-
work learning by exponential linear units (elus). In International Conference on Learning
Representations (ICLR), 2016.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

[26] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[27] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Proceedings of
the 36th International Conference on Machine Learning, 09–15 Jun 2019.

6

A Box Plot about CiteSeer

As we described in the section 4, we attach un-normalized attention value distribution of positive and
negative samples of CiteSeer in the appendix. See section 4 for the analysis.

positive negative
sample type

0.00

0.02

0.04

0.06

0.08

un
-n

or
m

al
ize

d
at

te
nt

io
n

Super-GAT/CiteSeer

positive negative
sample type

0.00

0.02

0.04

0.06

0.08

un
-n

or
m

al
ize

d
at

te
nt

io
n

GAT/CiteSeer

Figure 3: Box plots of un-normalized attention values from the first layer of super-GAT and GAT
trained with CiteSeer datasets.

7

	Introduction and Related Work
	Model
	Experiments
	Results
	Conclusion and Future Work
	Box Plot about CiteSeer

