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Abstract

With rising interest in graph representation learning, a variety of approaches have
been proposed to effectively capture a graph’s properties. While these approaches
have improved performance in graph machine learning tasks compared to traditional
graph mining techniques, they are still perceived as black-box techniques with
limited insights into the information encoded in these representations. In this
work, we explore methods to interpret node embeddings and propose the creation
of a robust evaluation framework for comparing graph representation learning
algorithms and hyperparameters. We test our methods on graphs with different
properties and investigate the relationship between embedding training parameters
and the ability of the produced embedding to recover the structure of the original
graph in a downstream task.

1 Introduction

Graphs play a key role in many machine learning tasks providing the structured information needed
to learn meaningful patterns and generate predictive models. However, it is challenging to represent
complex structures like graphs in an expressive and efficient way that they can be fed into machine
learning applications. Advances in the field of Graph Representation Learning [8, 5] appear to provide
a mapping that embeds nodes, or entire graphs, as dense low dimensional vectors. Recently proposed
approaches such as DeepWalk [13], LINE [16], node2vec [6], GCNs [10] and GraphSage [7] treat
this mapping as a machine learning task itself and aim to optimize it so that relationships in the
embedding space accurately reflect the topology of the original graph.

A common categorization distinguishes between shallow and deep node embeddings. Shallow
embeddings rely on first- or higher-order proximity derived from the original graph, often via random
walks, to provide the context of a node and inform its representation. Deep learning approaches
include Graph Convolutional Networks (GCNs) and Message Passing Neural Networks (MPNNs)
which extend the concept of convolution to describe a node as a function of its neighborhood.
Regarding the objective to optimize during training of the embeddings, unsupervised approaches
optimize for link reconstruction, supervised approaches for an externally assigned node label and
semi-supervised operate on a subset of labeled nodes.

Given that different embedding approaches optimize for different objectives and operate on different
input, it is expected that there is not a single "one-fits-all" node embedding technique. Recent work
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has focused on evaluating graph representation learning techniques with regards to their ability to
distinguish graph properties [4, 18]. In this direction, we investigate the interpretability of node
embeddings and propose an evaluation framework that answers the following questions:

• What information do node embeddings express and can we derive metrics to quantify their
properties?

• How can we evaluate node embeddings with or without external labels and is there a single
approach that maximizes performance across all tasks?

• Can complicated structures of the original graph be captured in embeddings trained on the
local context around a node?

The rest of the paper is organized as follows: Section 1.1 describes our proposed methodology, while
Section 2 shows the results of our experiments and concludes the article.

1.1 Methods

1.1.1 Interpretability

In graph representation learning, nodes are typically embedded into a fixed D dimensional vector
space (where D is a hyperparameter) Theoretically, the space is as condensed of a representation as
we can get, without loss of information. This indicates that an interpretable embedding dimension
would be highly associated with a particular feature of the original graph, a so-called disentangled
representation [9, 2, 11]. In NLP these features are often expressed in the form of semantic categories
of words [15, 12]. In the case of graphs such categories can be derived from extrinsic or intrinsic
sources, with the former being categories or labels assigned externally to nodes while the latter refers
to groups found in the decomposition of the original graph (e.g. communities or partitions).

We define an Interpretability Score adapted from [15] for each dimension and each group of nodes:

IStop(d,l) =
|Cl ∩ topk(Ed)|

|Cl|
× 100 ISbottom(d,l) =

|Cl ∩ bottomk(Ed)|
|Cl|

× 100 (1)

where Cl is the lth group of nodes and Ed is the dth embedding dimension, while k is a hyperparam-
eter set equal to the cardinality of Cl for our experiments. Interpretability scores are produced for
both the top and bottom nodes at each embedding dimension and they can be aggregated by taking
the maximum or average. Thereafter, scores are aggregated either across multiple groups to get the
score for a single embedding dimension or across embedding dimensions to obtain per group scores.

ISd = agg1
l=0 to L

(agg2(IStop(d,l), ISbottom(d,l))) ISl = agg1
d=0 to D

(agg2(IStop(d,l), ISbottom(d,l)))

(2)
If the top nodes in the positive or negative direction of an embedding dimension are highly associated
with a particular node category and at the same time have lower overlap with the rest of the categories,
then the interpretability of this dimension is strong.

1.1.2 Embedding approaches and Datasets

In random-walk based embedding models, there are two general components, a system for generating
long random walks (with some variants depending on the model), and a shallow one layer neural
network skip-gram model. Each of the components contains a set of hyperparameters out of which
the most commonly reported one is embedding dimensionality.

To investigate the proposed evaluation methods we use three datasets: one coming from the financial
sector (Brand Level Merchants - BLM) [3] and two from the social networks sphere (BlogCatalog)
and (Flickr) [17]. The BlogCatalog dataset contains friendship connections between bloggers.
Additionally, it contains labels for each node referring to 39 categories the bloggers could be affiliated
with. Similarly, Flickr data contains links between users of the Flickr board and 195 categories users
can be associated with. The Brand Level Merchant dataset is constructed from credit card transaction
logs. By taking any two transactions that share an account within a specified time window, a set
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Table 1: Dataset Statistics
Number of

nodes
Number of

edges Density Number of
communities

Brand Level Merchants over 100,000 over 8× 106 1.2× 10−3 400
(80 for 95% of nodes)

BlogCatalog 10,312 333,983 6.3× 10−3 6
Flickr 80,513 5,899,882 1.18× 10−3 17

of merchant pairs, meaning walk lengths equal to 2, are generated. For all datasets we generate
embeddings using the GENSIM implementation of word2vec [14] with the same hyperparameters
proposed in [3] and [13].

1.1.3 External and Internal Evaluation

In this work, we focus on evaluating embeddings both internally, meaning their ability to capture graph
structure and externally, meaning their distinguishing power against node labels. In the embedding
space, similar nodes are expected to be placed closer together, but the notion of similarity can be
arbitrarily defined based on node features, neighborhoods or connectivity patterns. Communities are
a broadly used way of graph partitioning and can capture complex structural similarity. Consequently,
they make a good test case for evaluating how graph structural properties are represented in the
embedding space. Two learning problems are generated from this: pairwise community detection,
which is a binary classification task of whether a pair of nodes belong in the same community and
node level community prediction, which we treat as a multi-class classification problem of predicting
the community a node belongs in given its embedding representation. For graphs that contain node
labels, like BlogCatalog and Flickr, we treat them the same way. The goal in both tasks is to test the
embeddings’ efficiency to separate nodes. For community detection we use Louvain’s algorithm for
optimizing modularity [1].

2 Results

For our experiments we produced embeddings for all datasets with embedding dimensionality of
10, 64 and 128. First, we examine Interpretability Scores (IS) aggregated over different axes to
explore the association of the embedding space with both external and internal node categorization.
Figure 1 shows the distribution of IS values over node communities for Brand Level Merchants and
over node groups for the BlogCatalog and Flickr graphs. We observe that some node categories are
highly associated with multiple dimensions of the embedding space (e.g. community 0 in Brand
Level Merchants). These are the most highly populated categories and contain a larger variety of
patterns expressed in multiple dimensions. Each embedding dimension appears to also be individually
correlated with a particular subset of node categories. For instance the 0th dimension for BlogCatalog
is mostly correlated with groups 1 and 15, while the 120th dimension carries information for groups
1, 14 and 3.

Next, we report in Table 2 the performance of different dimensionality embeddings on a set of
prediction tasks described in Section 1.1.3. We observe that, by increasing the number of embedding
dimensions, the ability to predict community membership does not improve, with an edge given to
denser representations in BlogCatalog and Brand Level Merchants. Interestingly, performance in all
node classification tasks we undertook is highly linked with Interpretability Scores distribution (see
Figure 1), with the highest values being achieved for community prediction over node classification.
Performance in external node classification increases with the number of dimensions for the BlogCat-
alog data, while for Flickr data medium sized embeddings outperform the rest in this task. We can
conclude that hyperparameter tuning can be based on two axes: graph properties of the dataset and
the structures of the original graph we need the embeddings to capture.

Link prediction accuracy, for which random-walk based approaches optimize, appears to be correlated
with external node classification. This is not always the case with community prediction, which
favors smaller sized embeddings in BlogCatalog and Brand Level Merchants while link prediction
improves with higher number of dimensions in the same datasets. In the Flickr graph different
dimensionality embeddings achieve almost identical link prediction AUC scores, but show big
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(a) IS for the 0th and 120th embedding dimensions across node groups for BlogCatalog data (D = 128)
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(b) IS for the 0th and 9th embedding dimensions across communities for Brand Level Merchants (D = 10)
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(c) IS for the 5th and 100th embedding dimensions across communities for Flickr (D = 128)

Figure 1: Interpretability scores over node categorizations for selected embedding dimensions

Table 2: Performance for different classification tasks with various embedding dimensionality values.
In binary classification values are F1-scores, in multi-class micro-averaged F1 and LPAUC is Link
Prediction AUC.

D
Brand Level Merchants BlogCatalog

Community Group Community

Binary Multi-class LP
AUC Binary Multi-label Binary Multi-class LP

AUC
10 0.78 0.84 0.98 0.55 0.35 0.71 0.86 0.87
64 0.71 0.86 0.95 0.75 0.42 0.68 0.80 0.90

128 0.71 0.85 0.94 0.78 0.40 0.72 0.83 0.93

D
Flickr

Binary Multi-label Binary Multi-class LP
AUC

10 – – – 0.70 0.37 0.80 0.85 0.95
64 – – – 0.70 0.40 0.70 0.88 0.96

128 – – – 0.67 0.40 0.77 0.94 0.96

deviations in performance in community prediction. Our findings imply that optimizing for link
occurrence or external labels alone is not always sufficient to evaluate the embedding space as a
whole and graph structure based tasks can shed light into the quality of latent representations. This is
only the first the step in an effort to design a generalizable evaluation framework for different graph
representation approaches across graphs with varying properties.
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