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Abstract

Predicting interactions between proteins and other biomolecules purely based on
structure is an unsolved problem in biology. The protein molecular surface, a
high-level representation of protein structure, displays the chemical and geometric
features that can enter in contact with other biomolecules. This representation
abstracts underlying details such as the precise arrangement of atoms and the
amino acid sequence. Here we hypothesize that features in the molecular surface
representation arrange in patterns, and proteins that perform similar interactions
may display similar patterns. We model the discretized molecular surface as a
graph and use data-driven geometric-deep learning tools to learn these patterns, and
exploit them through three prediction challenges: (a) pocket similarity comparison,
(b) protein-protein interaction site prediction and (c) prediction of interaction
patterns between proteins based on surface patterns.

1 Introduction

Predicting interactions interactions between proteins and other biomolecules purely from protein
structures remains one of the most important challenges in computational structural biology, with
broad relevance for biomedical research [1, 2]. A high-level representation of protein structure, the
molecular surface [3], describes proteins as continuous shapes. These shapes solely display the
geometric and chemical features that can enter in contact with other biomolecules (Fig. 1a). The
molecular surface’s usefulness for many tasks involving protein interactions has long been known, and
has been the preferred structural description to study the electrostatic interactions between proteins
and water [5]. Some more recent efforts have attempted to embed molecular surface features using
handcrafted techniques such as 3D Zernike descriptors [6, 7, 8, 9] and geometric invariant fingerprint
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Figure 1: Overview of the MaSIF conceptual framework. a. Left, conceptual representation of
a protein surface engraved with an interaction fingerprint, surface features that may reveal their
potential biomolecular interactions. Right, surface segmentation into overlapping radial patches of a
fixed geodesic radius used in MaSIF. b. Patches comprise geometric and chemical features mapped
on the protein surface. c. Polar geodesic coordinates used to map the position of the features within
the patch. d. MaSIF uses geometric deep learning tools to apply convolutional neural networks to the
data. Fingerprint descriptors are computed for each patch using application-specific neural network
architectures, which contain reusable building blocks (geodesic convolutional layers).

descriptors (GIF) [12] for fast searches and functional classification. The scope of these handcrafted
approaches is limited as it is hard, if not impossible, to determine a priori the right set of features for
a given prediction task.

We hypothesize that molecular surfaces are fingerprinted with patterns of features (termed interaction
fingerprints), and that proteins that perform similar interactions may display similar fingerprints.
We present MaSIF (Molecular Surface Interaction Fingerprinting), a geometric deep learning [4]
method that exploits the graph structure of the discretized molecular surface to learn embeddings
of the interaction fingerprints. MaSIF is showcased with three proof-of-concept applications (Fig.
1e): a) protein binding pocket similarity comparison (MaSIF-ligand); b) protein-protein interaction
(PPI) site prediction in protein surfaces, to predict which surface patches on a protein are more likely
to interact with other proteins (MaSIF-site); c) predicting the interaction likelihood of two surface
patches for fast searching of potential PPI binding partners (MaSIF-search).

2 Methods

MaSIF decomposes a protein surface into overlapping radial patches with a fixed geodesic radius (Fig.
1a-b). All discretized protein surfaces are computed from protein structures using the MSMS program
[10] and regularized using PyMesh [11]. Essential to our approach is to describe the molecular
surface data in geodesic space. Geodesic distances are approximated using the Dijkstra algorithm on
the edge weighted graph (graph geodesics) between the points along the surface. Around each vertex
of the mesh, we extract a patch with geodesic radius of r=9 Å (MaSIF-site) or r=12 Å (MaSIF-site
and MaSIF-ligand) (Fig. 1b). For each vertex within the patch, we compute two geometric features
(shape index [15] and distance-dependent curvature [12]) and three chemical features (hydropathy
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index [16], continuum electrostatics [17], and the location of free electrons and proton donors [18])
(Fig. 1b). The vertices within a patch are assigned geodesic polar coordinates (Fig. 1c): the radial
coordinate, representing the geodesic distance to the center of the patch; and the angular coordinate,
computed with respect to a random direction from the center of the patch, as the patch lacks a
canonical orientation.

The geodesic polar coordinates allow MaSIF to spatially localize features within each patch. In
these coordinates, we then construct a system of local Gaussian kernels for which the parameters
are learnable, based on the MoNET architecture [13]. Specifically, our local polar system contains
θ angular bins, and ρ polar bins, for a total of J = ρ · θ bins. For each vertex in the discretized
molecular surface x, with neighbors N(x), and each vertex y ∈ N(x), we define the coordinates
u(x, y), the radial and angular coordinates of y with respect to x. The mapping of each grid cell j for
feature vector f and the patch centered at x, Dj(x) f is defined as:

Dj(x)f =
∑

y∈N(x)

wj(u(x, y))f(y), j = 1, ..., J,

where wj is a weight function, and f(y) are the features at vertex y.

Since the radial coordinates are computed with respect to a random direction, it becomes essential
to compute information that is invariant to different directions (rotation invariance). To this end,
we perform K rotations on the patch and compute the maximum over all rotations [14], producing
a vectorized output for the patch location. The procedure is repeated for different patch locations
similar to a sliding window operation on images, producing the surface fingerprint at each point,
in the form of a vector that embeds information about the surface patterns of the center point and
its neighborhood. The learning procedure consists of minimizing the parameter set of the local
kernels and filter weights with respect to the application-specific training data and cost function. The
embedded data can then be further processed in neural network architectures.

2.1 Dataset generation and splits.

For all three applications we assembled databases of proteins from co-crystal structures (holo
structures). For MaSIF-ligand, a database of 11685 structures binding the small molecules ADP,
COA, FAD, NAD, NADP, and SAM was built. Structures were clustered based on sequence identity
(30% sequence threshold), reducing the number of structures to 1459. Structures were then randomly
split into training (72%), validation (8%) and testing (20%). We also selected a test set with an
additional structural split, where pockets in the test set were removed if they aligned to at least one
training set pocket with a TM-align score [26] of more than 0.5. For MaSIF-site a database of
6001 PPI pairs was used as the training set, with the ground truth labeled based on the surface areas
that become inaccessible in co-crystal structure. The dataset was split into the interacting subunits,
resulting in 12002 proteins. Proteins were then clustered by sequence identity (30% threshold) and
one representative was selected from each cluster. The training and test set were then further split
using scikit-learn’s hierarchical clustering, based on a structural alignment using TM-align scores
[26], resulting in 3004 training and 358 test set proteins. 53 proteins from the test set were further
selected for comparison with other baseline methods. For MaSIF-search only a structural split was
performed. The interfaces of the 6001 PPIs used in MaSIF-site were aligned all-against-all and and
split into training and testing based on scikit-learn’s hierarchical clustering. After removing cases that
failed with TM-align, this resulted in 4944 training and 957 testing PPIs. Details on the architectures
and training are shown in Fig. S1-S3.

3 Results

In our first application, MaSIF-ligand, we explore whether the interaction fingerprints in protein
surfaces hold sufficient information to decipher the small-molecule-binding preference of protein
pockets. For this proof-of-concept we selected pockets that recognize six different small molecules
(Fig 2a), all of which have abundant structural data available and bind to proteins with little sequence
identity. We trained The classification task consisted of classifying a pocket into six different classes.
In our two datasets, MaSIF-ligand’s outperformed two other state-of-the-art (benchmarked in [21])
methods: ProBIS [19] and KRIPO [20] (Fig. 2b-c).

3



Figure 2: MaSIF proof-of-concept applications. (a) MaSIF-ligand. MaSIF-ligand receives as
input a protein pocket and predicts a score for 6 ligands. (b-c) Performance of MaSIF-ligand and
two baseline methods on a test set with amino acid (b) sequence-redundancy removed, and (c)
sequence+structure redundancy removed. (d) MaSIF-site. MaSIF-site receives receives as input
a single protein surface and computes a score on each vertex for its propensity to form PPIs. (e)
Example of the effect of multiple layers of convolution on MaSIF-site’s predictions. (f) Performance
of MaSIF-site vs. two baseline methods on a test set of 53 proteins involved in transient PPIs. (g)
MaSIF-search. MaSIF-search is trained to produce descriptors that are similar (close in Euclidean
space) for interacting patches and dissimilar (far in Euclidean space) for non-interacting patches. (h)
Performance of MaSIF-search and the baseline method GIF [12].

Our second application, MaSIF-site, receives a protein as input and outputs a predicted score for each
vertex of the surface mesh on the likelihood of this vertex being part of the interface with another
protein. MaSIF site does not use explicit knowledge of the interacting partner (Fig. 2d). We find
that in this task using multiple layers of convolution results in a much better performance, illustrated
in Figure 2e with an example comparing the prediction of a network with one layer of convolution
with a network with 3 layers of convolution. We compared the performance of MaSIF-site with
that of the established, state-of-the-art [24] predictors: SPPIDER [22] and PSIVER[23]. MaSIF-site
significantly outperforms these established tools.

As a last example of MaSIF, we exploit MaSIF’s embedding as vectors to predict specific interactions
between proteins. Vector embedding, inspired by earlier work on GIF descriptors, is attractive
because, once the vectors are precomputed, nearest-neighbor techniques can scan billions of vectors
in milliseconds. Thus, we introduce MaSIF-search a new paradigm for the fast search of protein
binding partners based on surface fingerprints. MaSIF-search produces similar descriptors for pairs
of interacting patches, and dissimilar descriptors for non-interacting patches (Fig. 2g). To test this,
we assembled a database with >100K pairs of interacting protein surface patches with high shape
complementarity, as well as a set of randomly chosen surface patches, to be used as non-interacting
patches. A trio of protein surface patches termed binder, target, and random patches were fed into
the network of MaSIF-search (Fig. 2g). The neural network is simultaneously trained to minimize
the Euclidean distance between the fingerprint descriptors of binders and targets, while maximizing
the dissimilarity between targets and random. In order to help the network learn faster and to improve
performance in general, we invert the features of one of the patches (the binder patch), by multiplying
all features by -1 (with the exception of hydropathy features). For this task we compare our results
to GIF descriptors, which were originally proposed for fast searching of protein surfaces (Fig. 2h).
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MaSIF-search’s descriptors, which vastly outperform GIF descriptors, could be coupled with an
alignment tool, such as RANSAC, for further refinement of results for fast PPI prediction.

4 Conclusions

In summary, we present a conceptual framework to decipher interaction fingerprints, leveraging the
representation of protein structures as molecular surfaces, together with powerful geometric deep
learning techniques. Thanks to our data-driven approach, high-level features are learned for each
task, which may be impossible with handcrafted approaches. In all three applications presented here,
MaSIF outperforms baseline methods, consistent with the emergent trends in the field of computer
vision where learned features outperform handcrafted features. Overall, MaSIF search provides a
new tool for the study of protein interactions, with broad applications in biomedical research.
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Figure S1: Network architecture for MaSIF-ligand. 32 randomly sampled pocket patches are fed
through convolutional layers followed by a fully connected layer (FC80). Descriptors are combined
in a 80x80 covariance matrix followed by two fully connected layers (FC64 and FC7) and then
softmax cross-entropy loss. The network was trained for 40 ’wall-clock’ hours, and killed after 40
hours, which allowed for 335000 iterations.

Figure S2: Network architecture for MaSIF-site. Patches are fed through convolutional layers
followed by a series of fully connected layers (FC5, FC4, FC2), and finally a sigmoid cross-entropy
loss. MaSIF-site was trained for 40 ’wall clock’ hours (43 epochs).

7



Figure S3: Network architecture for MaSIF-search. Patches from the target and the corresponding
binder or a random patch are fed through convolutional layers, followed by a fully connected layer
(FC80). The L2-distance between the resulting descriptors is computed and the neural network is
optimized to minimize this distance with respect to binder and maximize it with respect to the random
patch. MaSIF-search was trained for 40 ’wall-clock’ hours, which allowed for 335000 iterations.
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