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Abstract

We propose a novel graph-driven generative model, that unifies multiple heteroge-
neous learning tasks into a unified framework. The proposed model is based on the
fact that heterogeneous learning tasks, which correspond to different generative
processes, often rely on data with a shared graph structure. Accordingly, our
model combines a graph convolutional network (GCN) with multiple variational
autoencoders (i.e., graph-driven VAEs), thus embedding the nodes of the graph (i.e.,
samples for the tasks) in a uniform manner while specializing their organization and
usage to different tasks. With a focus on healthcare tasks, including clinical topic
modeling, procedure recommendation and admission-type prediction, we show
that our method successfully leverages information across different tasks, boosting
performance in all tasks and outperforming existing state-of-the-art approaches.

1 Introduction
Heterogeneous multi-task learning aims to jointly solve different learning tasks, while each task
potentially has a different objective. A central problem is to properly leverage information shared
across all tasks [20, 4] and enrich the learning of each individual task. From the perspective of
generative models, heterogeneous tasks usually correspond to distinct generative processes. This
implies that traditional generative multi-task learning methods [2, 1, 26, 27] are not appropriate.

In this paper, we propose a graph-driven generative model to learn heterogeneous tasks in a unified
framework. Taking advantage of the graph structure that commonly appears in many real-world
data, the proposed model treats feature views, entities and their relationships as nodes and edges
in a graph, and formulates learning heterogeneous tasks as instantiating different sub-graphs from
the global data graph. Specifically, a sub-graph contains the feature views and the entities related
to a task and their interactions. Both the feature views and the interactions can be reused across all
tasks while the representation of the entities are specialized for the task. We combine a shared graph
convolutional network (GCN) [10] with multiple variational autoencoders (VAEs) [9]. The GCN
serves as a generator of latent representations for the sub-graphs, while the VAEs are specified to
address the different tasks. The model is then optimized jointly over the objectives for all tasks to
encourage the GCN to produce representations that can be used simultaneously by all of them.

We take health care as an motivating example, in which ICD (International Statistical Classification
of Diseases) codes for diseases and procedures are used for multiple tasks, e.g., modeling clinical
topics of admissions, recommending procedures according to diseases and predicting admission
types. In our work, ICD codes and hospital admissions (sets of ICD codes) constitute a graph as
shown in Figure 1. The edges between ICD codes and those between ICD codes and admissions
are quantified according to their coherency. The ICD codes are embedded during training, which
are used to specialize the embeddings of admissions for different tasks. At test time, the GCN
is used to represent sub-graphs, i.e., collections of shared ICD codes, specialized admissions and
their interactions, that feed into different task-specific VAEs. Experimental results show that the
graph-driven framework indeed improves the performance of the three tasks described above.
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Figure 1: Illustration of the proposed model for healthcare tasks. Each task operates on a different sub-graph
from the admission graph. The shared GCN (fφ) learns embeddings for ICD codes and admissions, and the
embeddings pass through task-specific VAEs accordingly.

2 Proposed Model
A natural solution to solve heterogeneous multi-task learning from a generative model perspective is
to model multiple generative processes, one for each task. In particular, given K tasks, each task k is
associated with training data (xk,yk), where yk represents the target variable, and xk represents the
variable associated with yk. We propose using K sets of VAEs [9] for modeling {yk}Kk=1 in terms of
latent variables {zk}Kk=1, where each zk is inferred from xk using a task-specific inference network.
The generative processes are defined as

yk ∼ pθk(yk|zk) , zk ∼ p(zk) , k = 1, . . . ,K. (1)

with corresponding inference networks specified as
zk ∼ qψk(zk|fφ(xk)) , k = 1, . . . ,K. (2)

For the k-th task, pθk(·) represents a generative model, and p(zk) is the prior distribution for latent
code zk. The corresponding inference network for zk consists of two parts: (i) a deterministic
encoder fφ(·) shared across all tasks to encode each xk into x̂k = fφ(xk) independently; and (ii) a
stochastic encoder with parameters ψk to stochastically map x̂k into latent code zk.

In likelihood-based learning, the goal for heterogeneous multi-task learning is to maximize the
empirical expectation of the log-likelihood 1

K

∑K
k=1 log(p(yk)). Since the marginal likelihood p(yk)

rarely has a closed-form expression, VAE seeks to maximize the evidence lower bound (ELBO),
which bounds the marginal log-likelihood as

L(θ1:K , ψ1:K , φ) =

∑
k

[
Eqψk (zk|fφ(xk))[log pθk (yk|zk)]− KL(qψk (zk|fφ(xk)) ‖ p(zk))

]
. (3)

However, for heterogeneous tasks, features are often organized in different views and the interactions
between observed entities can as well be different. As a result, it is challenging to find a common
fφ(·) for the {xk}Kk=1 with incompatible formats or even in incomparable data spaces.

Fortunately, such data can often be modeled as a data graph, whose nodes correspond to the entities
appearing in different tasks and edges capturing their complex interactions. Specifically, we represent
a data graph as G(V,X ,A), where V = {v1, v2, ...} is the set of nodes corresponding to the observed
entities, A ∈ R|V|×|V| is the adjacency matrix of the graph, and X = ∪Kk=1Xk is a union of
(trainable) feature sets. Let Xk = {xv,k}v∈Vk be the feature set for the k-th task, where Vk ⊂ V
contains the nodes related to the task and xv,k is the feature of the node v in task k. Based on
Xk, the observations of the k-th task correspond to a sub-graph from G, i.e., Gk = G(Vk,Xk,Ak),
where Ak = A(Vk,Vk) selects rows and columns from A. To endow the framework a unified
inference network, we implement fφ(·) in (3) with a graph convolutional network (GCN) [10] and
thus zk ∼ qψk(zk|GCNφ(Gk)), with parameters of the inference network shared among tasks.

3 Typical Specification for Healthcare Tasks
To show the feasibility of our model, we describe a specification to solve tasks associated with
hospital admissions. Let Vd = {vd1 , vd2 , . . .} and Vp = {vp1 , v

p
2 , . . .} denote the set of disease and

procedure ICD codes, respectively, i.e., each component vdi ∈ Vd represents a specific disease and
each vpi ∈ Vp represents a specific procedure. Suppose we observe N hospital admissions, denoted as
Va = {va1 , va2 , . . . , vaN}. Each van ∈ Va is associated with some ICD codes and a label representing
its type, i.e., {Vdn,Vpn, cn} for n = 1, . . . , N , where Vdn ⊆ Vd, Vpn ⊆ Vp and cn ∈ C is an element
in the set of admission types C. Based on these observations, we consider three healthcare tasks:
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i) clinically-interpretable topic modeling of admissions; ii) procedure recommendation; and iii)
admission-type prediction. A configuration of variables/graphs is highlighted in Table 5 in Appendix.

Construction of edges Inspired by existing research [12, 5, 16, 25], we enrich the representation
power of our model with the meaningful population statistics. Two types of edges are considered.
(i) Edges between ICD codes. ICD codes appear coherently in many admissions, e.g., diabetes
and its comorbidities like cardiovascular disease. Accordingly, edges between ICD codes with
high coherency should be weighted heavily. Based on this principle, we apply point-wise mutual
information (PMI) as the weight between each pair of ICD codes. Formally, for each pair of
ICD codes, PMI(i, j) = log pij − log(pipj), for i, j ∈ Vd ∪ Vp, where pij =

|{van|i,j∈V
d
n∪V

p
n}|

N

and pi =
|{van|i∈V

d
n∪V

p
n}|

N . Positive PMI values indicate that the ICD codes in the pair are highly-
correlated with each other. Conversely, negative PMI values imply weak correlation. Therefore, we
only consider positive PMI values as the weights of edges.
(ii) Edges between ICD codes and admissions. Analogous with the relationship between words and
documents, we weight the edge between ICD codes and admissions with the term frequency-inverse
document frequency (TF-IDF)1, which defines how important an ICD code in an admission [15, 18].

Summarizing the above, elements aij in the adjacency matrixA are represented as

aij =


1, i = j

PMI(i, j), i, j ∈ Vd ∪ Vp and PMI(i, j) > 0

TF-IDF(i, j), i ∈ Va, j ∈ Vd ∪ Vp

0, otherwise

. (4)

Graph-driven VAEs for different tasks We specify our model as graph-driven variational autoen-
coder (GD-VAE) and describe the aforementioned interested tasks as follows.

(i) Topic modeling of admissions. In the context of topic modeling, each ICD code can be considered
as a word or token, while each admission corresponds to a document. However, patient admissions
exhibit extreme-sparsity issues in the sense that a very small set of codes are associated with each
admission. To circumvent this problem, inspired by [24], we model bi-term collections, and aggregate
bi-terms from several admissions as one document. The generative process of our proposed Neural
Bi-term Topic Model (NBTM) is as follows:

zT ∼ Dir(α), l ∼ Multi(1,zT ), yT ∼ Multi(2,βl) , (5)

where yT is the bi-term variable and its instance is a pair of ICD codes, {vi, vj}. zT is the
topic distribution. α is the hyper-parameter of the Dirichlet prior; β = {βl ∈ R|Vd|+|Vp|}Ll=1
are trainable parameters, each representing a learned topic. The Dirichlet prior is known to be
essential for generating interpretable topics [21] and it can be approximated with a multivariate
logistic normal [19] for efficient inference.

(ii) Procedure recommendation. For an admission, we aim to predict the set of procedures yR for a
set of diseases. Inspired by [11], we consider the following generative process:

zR ∼ N (0, I), πR ∝ exp{g(zR)}, yR ∼ Multi(M,πR) , (6)

where yR is |Vp|-dimensional variable and its instance is a list of M recommended procedures.
g(·) is a multi-layer perceptron (MLP). The output of this function is normalized to be a probability
distribution over procedures, i.e., πR ∈ ∆|V

p|, where ∆ denotes a simplex. Then we derive procedures
for the given admission by sampling M times from a multinomial distribution with parameter πR.

(iii) Admission-type prediction. For an admission, the goal is to predict the admission type given
both its diseases and procedures. We consider the generative process for modeling admission types as

zP ∼ N (0, I), πP ∝ exp{h(zP )}, yP ∼ Multi(1, πP ) , (7)

where yP is a variable and its instance corresponds to an admission type in the set C. h(·) is another
MLP, The instance of yR is sampled once from a multinomial distribution with parameter πP .
Inference with a shared GCN The proposed model unifies three tasks via sharing a common
GCN-based inference network. Specifically, the posteriors of the three latent variables are

zT ∼ LN (µT ,ΣT ), zR ∼ N (µR,ΣR), zP ∼ N (µP ,ΣP ), (8)

where [µk;Σk] = MLPψk(GCNφ(Gk)) for k ∈ {P,R, T}. Let θT , θR, θP denote the parameters of
the generative networks for each task, respectively. All the parameters {θT , θR, θP , ψP , ψR, ψT , φ}
are optimized jointly via maximizing (3).

1https://en.wikipedia.org/wiki/Tf\T1\textendashidf
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4 Experiments
We test GD-VAE on a subset of MIMIC-III dataset [7], containing 31, 213 admissions with 2, 765
disease and 819 procedure ICD codes. The configuration of our experiments is presented in Appendix.

Method T=10 T=30 T=50
LDA [3] 0.101 0.106 0.103

AVITM [19] 0.123 0.116 0.108
BTM [24] 0.104 0.110 0.107

GD-VAE (T) 0.128 0.129 0.123
GD-VAE (TP) 0.129 0.127 0.125
GD-VAE (TR) 0.136 0.133 0.127

GD-VAE 0.136 0.137 0.131

Table 1: Results on topic coherence for dif-
ferent models.

Topic modeling. Topic coherence [14] is used to evalu-
ate the performance of topic modeling methods. Table 4
compares different methods on the mean of NPMI over
the top 5/10/15/20 topic words. We find that LDA [3]
performs worse than neural topic models (including ours),
which demonstrates the necessity of introducing power-
ful inference networks to infer the latent topics. In terms
of the GCN-based methods, GD-VAE and its variants
capture global statistics between ICD codes and those be-
tween ICD codes and admissions, thus outperforming the
three baselines by substantial margins. For leveraging
knowledge across tasks, we find that the improvements
are largely contributed by procedure recommendation, and marginally from admission prediction.
This is because procedure recommendation accounts for the concurrence between disease codes and
procedure codes within an admission, while the topic model considers the concurrence between the
codes from different admissions. Both models capture the concurrence of ICD codes in different
views, thus, naturally enhancing each other. We further visualize the top-5 ICD codes for some
learned topics in the Appendix and find that the topic words are clinically-correlated.

Method Top-1 (%) Top-3 (%) Top-5 (%) Top-10 (%)
R P F1 R P F1 R P F1 R P F1

Word2Vec [13] 5.3 22.9 8.7 14.6 21.1 15.3 24.8 21.0 20.1 41.1 17.7 22.2
DWL [23] 5.6 23.0 9.0 14.9 21.3 15.6 24.8 21.4 20.5 42.0 18.2 23.0
BPR [17] 7.3 26.7 10.2 23.0 27.1 21.2 38.4 27.6 27.9 56.6 21.7 28.0

VAE-CF [11] 17.8 50.1 23.5 35.2 37.9 33.4 47.9 32.4 34.6 63.0 21.7 30.2
GD-VAE (R) 20.1 53.4 25.8 37.2 40.1 35.5 49.1 32.5 35.2 64.6 23.7 31.0

GD-VAE (RP) 20.4 53.3 26.1 37.9 39.7 35.9 49.9 32.7 35.5 65.1 24.0 31.2
GD-VAE (RT) 20.9 56.2 27.2 41.0 42.2 36.5 50.9 35.1 36.6 66.0 24.7 32.5

GD-VAE 21.2 56.4 27.4 40.9 43.0 36.7 51.4 35.2 36.8 66.5 24.9 32.7

Table 2: Comparison of various methods on procedure recommendation.

Procedure recommendation Similar to [6, 23], we use top-M precision, recall and F1-Score to
evaluate the performance of procedure recommendation. Results are provided in Table 2. GD-VAE
(R) is comparable to previous state-of-the-art algorithms. With additional knowledge learned from
topic modeling and admission-type prediction, the results can be further improved. Similar to
the observation in Section 4, topic modeling contributes more to procedure recommendation than
admission-type prediction, since both topic modeling and procedure recommendation explore the
underlying relationship between diseases and procedures.

Method P R F1
Word2Vec [13] 87.11 89.16 88.12

FastText [8] 88.06 89.23 88.00
SWEM [18] 87.55 89.88 88.67
LEAM [22] 87.61 89.94 88.73
GD-VAE (P) 88.23 90.41 89.30

GD-VAE (TP) 88.31 90.56 89.41
GD-VAE (RP) 89.07 90.98 90.00

GD-VAE 89.14 91.01 90.05
Table 3: Results on admission-type
prediction.

Admission-type prediction. We employ precision, recall and F1-
Score to evaluate the performance of admission-type prediction as
well. Results in Table 3 show that GD-VAE outperforms its com-
petitors. It is interesting to find that compared with topic modeling,
procedure recommendation is more helpful to boost the results of
admission-type prediction. One possible explanation is that the
admission type is more relevant to the set of procedures, hence
the embedding joint learned with procedure recommendation can
better guide itself towards an accurate prediction, e.g., it is likely
to observe a surgery procedure in an urgent admission.

5 Conclusions
We have proposed a novel graph-driven variational autoencoder (GD-VAE) to learn multiple heteroge-
neous tasks within a unified framework. This is achieved by formulating entities under different tasks
as different types of nodes, and using a shared GCN-based inference network to leverage knowledge
across all tasks. Our model is general in that it can be easily extended to new tasks by specifying the
corresponding generative processes. Experiments on real-world healthcare datasets demonstrate that
GD-VAE can better leverage information across tasks, and achieve state-of-the-art results on clinical
topic modeling, procedure recommendation, and admission-type prediction simultaneously.
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ICD codes Description

Topic 1

d8708 Other Specified open wounds of ocular adnexa
d85306 Other and unspecified intractranial hemorrhage following injury
dE8192 Closed reduction of mandibular fracture
p7817 Application of extrenal fixator device, tibia and fibula
p2751 Suture of Iaceration of lip

Topic 2

p3783 Initial insertion of dual-chamber device
p3764 Removal of external heart assist system or device
d7660 Exceptionally large baby
93514 Open heart valvuloplasty of tricuspid value without replacement
d41021 Acute myocardial infarction of inferolateral wall, initial episode of care

Topic 3

d8774 Retrograde pyelogram
d5503 Percutaneous nephrostomy without gragmentation
d6084 Other inflammatory disorders of male genital organs
p560 Transurethral removal of obstruction from ureter and renal pelvis
d1981 Secondary malignant neoplasm of other urinary organs

Topic 4

p3951 Clipping of aneurysm
d2242 Frontal sunusectomy
p109 Other cranial puncture
d78552 Other craniotomy
d51883 Other specified acquired deformity of head

Topic 5

d33520 Amyotrophic lateral sclerosis
d51902 Mechanical complication of tracheostomy
p3199 Other operations on trachea
d7708 Other tracheostomy complications
d8718 Chronic respiratory failure

Topic 6

d7783 Other hypothermia of newborn
p640 Circumcision
d76406 “light-for-dates” without mention of fetal malnutrition
d7731 Hemolytic disease of fetus or newborn due to ABO isoimmunization
p9983 Other phototherapy

Topic 7

d45620 Esophageal varices in diseases classified elsewhere, with bleeding
p9635 Gastric Gavage
d4560 Esophageal variaces with bleeding
d4233 Endoscopic excision or destruction of lession or tissue of esophagus
d53240 Chronic or unspecified duodenal ulcer with hemorrhage, without mention of obstruction

Table 4: Full description of topic words.

A Configurations of Our Method

We test various methods in 10 trials and record the mean value and standard deviation of the
experimental results In each trial, we split the data into train, validation and test sets with a ratio of
0.6, 0.2 and 0.2, respectively. For the network architecture, we fix the embedding space to be 200 for
ICD codes and admissions, and a two-layers GCN [10] with residual connection is considered for
the inference network. In terms of the dimension of latent variable, zT is identical to the number of
topics for topic modeling and 200 for the other two tasks, zR and zP . In the aspect of the generative
network, a linear layer is employed for both topic modeling and admission type prediction. For the
procedure recommendation, a one-hidden layer MLP with tanh as the nonlinear activation function
is used. As for the hyper-parameters, we merge 10 randomly sampled admissions to generate a topic
admission for our NBTM, such that yT is not too sparse, and 5, 000 samples are generated so as to
train the model. Following [19], the prior α is a vector with constant value 0.02.

To investigate the affect of each components, we use “T”, “R” and “P” to denote topic modeling,
procedure recommendation and admission-type prediction, respectively. GD-VAE learns the three
tasks jointly. To further verify the benefits of multi-task learning, we consider variations of our
method that only learn one or two tasks, e.g., GD-VAE (T) means only learning a topic model, and
GD-VAE (TR) indicates the joint learning of topic modeling and procedure recommendation.

Task Gk ykVk xkvan in Xk
Topic Modeling V MaxPooling({xv}v∈Vdn∪Vpn) Bi-term ICD codes

Procedure Recommendation Vd ∪ Va MaxPooling({xv}v∈Vdn) List of procedures
Admission-type Prediction V MaxPooling({xv}v∈Vdn∪Vpn) Admission type, c ∈ C

Table 5: Illustration of the differences between the three healthcare tasks.
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