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Abstract

While a wide range of interpretable generative procedures for graphs exist, match-
ing observed graph topologies with such procedures and choices for its parameters
remains an open problem. Devising generative models that closely reproduce real-
world graphs requires domain knowledge and time-consuming simulation. While
existing deep learning approaches rely on less manual modelling, they offer little
interpretability. This work approaches graph generation (decoding) as the inverse
of graph compression (encoding). We show that in a disentanglement-focused
deep autoencoding framework, specifically β-Variational Autoencoders (β-VAE),
choices of generative procedures and their parameters arise naturally in the latent
space. Our model is capable of learning disentangled, interpretable latent variables
that represent the generative parameters of procedurally generated random graphs
and real-world graphs. The degree of disentanglement is quantitatively measured
using the Mutual Information Gap (MIG). When training our β-VAE model on
ER random graphs, its latent variables have a near one-to-one mapping to the ER
random graph parameters n and p. We deploy the model to analyse the correlation
between graph topology and node attributes measuring their mutual dependence
without handpicking topological properties. To allow experimenting with the code,
we provide an interactive notebook1.

1 Introduction

Motivation and Related Work Conventional network analysis aims at finding interpretable models
that explain interaction dynamics by examining graphs as discrete objects [1]. Random graph
generator models [2] like Erdős–Rényi random graphs (ER graphs) [3] are usually too generic to
accurately represent the versatile linking patterns of real-world graphs [2, 4, 5]. Devising models that
reproduce characteristic topologies prevalent in social [6], biological [7], internet [8] or document
[9] graphs typically requires a thorough understanding of the domain and time-consuming graph
simulations, thereby imposing strong assumptions and modelling bias. Recently, deep learning on
non-euclidean data such as graphs has received substantial attention [10]. As these techniques require
little or no explicit modelling and capture complex graph structure [11, 12], we propose to use them
as a tool to obtain interpretable generative parameters of graphs. As a limiting factor, most existing
models generate graphs sequentially based on concatenations of node embeddings. These are not
only non-interpretable but also impose an artificial node ordering instead of considering a global
representation of the entire graph [13–18]. DisenGCN [19] focuses on interpretability, but is limited
to node-level linking mechanisms. The latent space of NetGAN [20] reveals topological properties
instead of generative parameters. Some recent works on interpretable graph embeddings [12, 21–24]
provide visualizations for inspection, but no parameters suitable for a generative model.

1https://colab.research.google.com/drive/1M--YX4dOSt3imDPdecPbjVX-T6Ae0_OG
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Figure 1: Architecture Overview: We seek a continuous function h mapping the disentangled latent
variables zj into mutually independent, interpretable generative parameters vk.

In other domains, interest in model interpretability has caused a focus on the latent space of neural
models [25]. Intuitively, the aim is to shape the latent space such that the euclidean distance between
the latent representations of two data points corresponds to a “distance” between the actual data
points [26]. Latent variables describe probability distributions over the latent space. The goal of latent
variable disentanglement can be understood as wanting to use each latent variable to encode one and
only one data property in a one-to-one mapping [27], making the latent space more interpretable.
Varying one latent variable should then correspond to a change in one observable factor of variation
in the data, while other factors remain invariant [26]. Most work in this field has been focused on
visual and sequential data [27–30].

Contributions We assume that graphs are generated by superposition of interpretable, generative
procedures parameterized by generative parameters vk such as n and p in ER graphs. We hypothesize
that these generative parameters vk can be encoded by a minimal set of disentangled latent variables
zj in an unsupervised machine learning model. To this end, we apply the idea of β-Variational
Autoencoders (β-VAE) [31] in the context of graphs. Intuitively, our autoencoder tries to compress
(encode) a graph into a latent variable representation suitable for generating (decoding) it back
into the original graph as outlined in figure 1. If the number of latent variables is lower than the
dimensionality of the input data, they force a compressed representation that prioritizes the most
salient data properties. In this article, we
(1) discuss how to adapt the β-VAE model to graphs in section 2,
(2) apply it to recover parameters for topology-generating procedures in section 3.1, and
(3) leverage it to quantify dependencies between graph topology and node attributes in section 3.2.

2 Model

We instantiate the idea of β-VAEs [31] with graph-specific encoders and decoders. Our encoder
model qΦ(z | x) is a Graph Convolutional Network (GCN) [32] and the decoder pΘ(x | z) is a
deconvolutional neural network. Hence, in our setting the encoder is operating on the graph structure,
whereas the decoder produces a graph by computing an adjacency matrix. We train this autoencoder
in the β-VAE setting, in which the loss to minimize is Ez∼qΦ(z|x)[log pΘ(x | z)] + β(KL(qΦ(z |
x) ‖ p(z))). In the loss term, the reconstruction loss is balanced with the KL regularization term
using a parameter β ≥ 1. A higher value of β yields stricter alignment to the Gaussian prior
p(z) = N (0, 1), leading to an orthogonalization of the encoding in z [27–29]. To further enforce
disentangled representations of vk, we attach an additional parameter decoder h to the latent space
that learns a direct mapping h(z)→ v between latent variables zj and generative parameters vk. If h
is implemented as a linear mapping, the latent space needs to align with the generative parameters vk,
hence further favoring the result of the encoder qΦ(z | x) to be disentangled. If the latent space is
perfectly disentangled, there should exist a one-to-one, bijective mapping h(z)→ v between latent
variables zj and generative parameters vk.

For graphs of which we know the ground truth generative parameters vk, we use the metric Mutual
Information Gap (MIG) [27] to quantify the degree of correlation between zj and vk. MIG measures
both, the extent to which latent variables zj share mutual information with generative parameters
vk, and the mutual independence of the latent variables from each other. The metric ranges between
0 and 1, where 1 represents a perfectly disentangled scenario in which there exists a deterministic,
invertible one-to-one mapping between zj and vk. MIG is computed by first identifying the two latent
variables zj of highest mutual information (MI) with each generative parameter vk. The MIG score is
then defined as the difference (gap) between the highest and second highest MI, averaged over the
generative factors vk.
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3 Evaluation

3.1 Modelling Graph Topology with Latent Variables
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Figure 2: Disentangled latent representation of ER graphs The latent space appears axis-aligned
with z0 and z1 orthogonally representing p and n. Changing one latent variable z0 or z1 corresponds
to a change in one generative parameter p or n respectively, while being relatively invariant to changes
in other parameters. z2 and z3 are not utilized by the model.

First, we evaluate our approach on synthetically generated graphs, concretely, ER graphs [3]. The ER
generation procedure takes two parameters: the number of nodes n and a uniform linking probability
p. Ideally, our model should be able to single out these independent generative parameters by utilizing
only two latent variables that describe a one-to-one mapping. To test this hypothesis, we generate
10,000 ER graphs, n varying between 1 and 24 and p between 0 and 1. We use these to train our
model with a latent space of size J = 4 and β = 5.0.

To inspect the latent space of the trained model, we sample from zj in fixed-size steps and decode the
sample through pΘ(x | z). Figure 2 shows graphs (on the left) and adjacency matrices (in the center)
sampled from the latents z0 and z1 while keeping other latents z3, z4 fixed. The adjacency matrices
allow reading off topological properties of the graphs such as degree distribution and assortativity
since nodes are sorted according to the extended BOSAM [33] algorithm. Instead of decoding samples,
we may also encode graph instances x with known ground truth generative parameters vk and observe
the latents zj . We generate a new set of 1,000 ER graphs with varying vk and feed these graphs to
the trained model. In figure 2 (on the right), each row displays samples from one latent variable zj
and the columns represent generative parameters p an n. We find that a change in p or n results in a
change in z0 or z1 respectively, while being invariant to changes in other variables. This is manifested
in a MIG of 0.62, denoting moderate to strong disentanglement. z2 and z3 do not show correlations
with either p or n, emphasizing their "non-utilization". This shows that the latent variables of our
model correctly discover the dimensionality 2 of the underlying generative procedure of ER graphs.

We repeat the experiment on a uni-, bi- and tri-parametric random graph model and two real-world
graphs presented in the appendix. The selected graphs are complete binary tree graphs, BA graphs
[34], Small-World graphs [35] as well as the CORA [36] and Wikipedia Hyperlink [37] graph.

3.2 Measuring Graph Topology-Node Attribute Dependence

In addition to pure graph topology τ , we consider node-level attributes Ω and measure the degree to
which τ and Ω are mutually dependent. For example in a co-authorship graph where nodes represent
authors and undirected links represent joint papers between authors, each node may hold additional
information about the author’s overall citation count. We denote this additional information as node
attributes Ω. Intuitively, more collaborations and therefore a higher node degree encourage a higher
citation count, though there may be numerous other hidden correlations between graph topology and
node attributes. Most existing topology-based approaches cannot make a general statement to what
extent graph topology and node attributes are correlated without hand-picking particular topological
properties such as the node degree [38].
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Figure 3: Latent representation of ER graphs with uniform node attributes Node attribute
values are indicated by the shade of blue. Traversing z0 and z1 while keeping other latent variables
fix reveals a change in the topology τ , as p and n vary. z0 and z1 are invariant to node attributes Ω.
Since z2 is most volatile to ∆Ω, it presumably models Ω.

We claim that the dependence between topological structure τ and attributes Ω is encoded in the latent
variables. If τ and Ω are generated by independent generative procedures, they may be described by
two disentangled sets of latent variables [29]. Proposing a node attribute randomization approach, we
work with two data sets, the original graphs X and their attribute-randomized versions X∆Ω. Since
random graph generators such as ER graphs [3] do not cover node attributes, we first have to generate
synthetic node attributes. Independent from n and p, and hence from the topology τ , all nodes of
an ER graph are uniformly at random assigned the same node attribute which is a value between 0
and 1. We train the modified β-VAE on this graph data set X . After training, we randomize the node
attributes, ending up with the randomized graph data X∆Ω. We vary the randomization degree ∆Ω
between 0 and 1, which denotes the fraction of randomized nodes. Finally, we present X and X∆Ω

to the trained model in order to observe how the randomization affects the latent variables z.

In the case of τ -Ω independence, randomizing node attributes causes a shift in only those latent
variables modelling Ω. To indirectly quantify the dependence between τ and Ω, we measure the
correlation between ∆Ω and |∆z|. |∆z| describes the absolute change of zj due to ∆Ω. If only one
latent variable changes while others are invariant, τ and Ω are generated from a fixed number of
independent factors of variation [27]. Disentanglement between latent variables serves as a proxy for
the dependence of generative parameters vk. Figure 3 (left and center) displays manifolds of samples
from latent space. Traversing z0 and z1 while fixing other latent variables reveals a change in τ , as p
and n change, but invariance to Ω. z2 is modelling Ω, which is supported by figure 3 (right) showing
absolute shifts ∆zj in the latents depending on the fraction of randomized nodes ∆Ω.

Treating the randomization degree ∆Ω as a generative parameter, we calculate the mutual information
(MI) between ∆Ω and the absolute change in every latent zj . MIG(∆Ω; ∆z|) then computes the gap
between the first and second highest MI, normalized by the entropy H(∆Ω). In the equation below,
jmax = argmaxjMI(∆Ω; |∆z|) denotes the index of latent zjmax with highest MI regarding ∆Ω.

MIG(∆Ω; ∆|zj |) =
1

H(∆Ω)

(
MI(∆Ω; ∆|zjmax |)− max

j 6=jmax
MI(∆Ω; ∆|zj |)

)
The latent variable reacting most strongly to ∆Ω is z2. MIG(∆Ω; |∆z|) corresponding to figure 3 is
0.335, indicating moderate disentanglement of Ω and τ as z/2 are mostly invariant to ∆Ω. We repeat
the experiment on the Microsoft Academic Graph (MAG) [39] and Amazon Co-Purchasing Graph
[40], presented in the appendix. In particular for the Microsoft Academic Graph, the analysis reveals
a strong impact of the collaboration patterns (graph topology) on the citation count (node attributes).

Conclusion This work demonstrates the potential of latent variable disentanglement in graph deep
learning for unsupervised discovery of generative parameters of random and real-world graphs.
Experiments have largely confirmed our hypotheses, but also revealed shortcomings. Future work
should advance node order-independent graph decoders and target interpretability by exploiting
generative models that do not sacrifice reconstruction fidelity for disentanglement.
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Code

To allow experimenting with the code, we provide an interactive notebook at https://colab.
research.google.com/drive/1M--YX4dOSt3imDPdecPbjVX-T6Ae0_OG.
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Figure 4: Latent representations of real-world graphs Latent space of β-VAE model trained
on 10,000 sub-graphs from CORA [36] and Wikipedia [37] sampled using Biased Second-Order
Random Walks [21]. Plot (a) and (b) show manifolds of decoded x instances, presented as graphs
and adjacency matrices respectively. Plot (c) compares the normalized degree distribution of x with
the distribution of the entire, original graph. Similarly, plot (d) shows the difference in clustering
coefficient, degree assortativity and average degree.

MIG (∆Ω;|∆z|) = 0.005 
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Figure 5: Latent representations of real-world graphs with node attributes Manifold of graph
instances obtained from traversing latent variables zj and decoding samples according to pΘ(x|z).
In the Microsoft Academic Graph, topology τ and node attributes Ω can hardly be disentangled
(MIG

(
∆Ω; |∆z|

)
= 0.005). A reason lies in a strong correlation (0.4662) between the number of

collaborations (τ ) and citations (Ω).
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Figure 6: Disentangled latent representation of uni-, bi- and tri-parametric random graph gen-
erator models Latent representation of uni-parametric complete binary tree graph, bi-parametric
Barabasi-Albert (BA) graphs [34] and tri-parametric Small-World graphs (SW) [35]. For visualizing
the tri-parametric SW graphs, we pick a fixed value for z0 throughout all samples from the latent
space. Since z0 models the number of nodes n, all generated graphs in the manifolds are of fixed size.
In compliance with intuition, the higher the degree of freedom in terms of generative parameters, the
more difficult their successful disentanglement, manifested in a lower MIG value for the tri-parametric
SW graph. If a uni-parametric model is described by a single latent variable, MIG is not informative.
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