
Graph Few-shot Learning via Knowledge Transfer

Huaxiu Yao1, Chuxu Zhang2, Ying Wei3, Meng Jiang2,
Suhang Wang1, Junzhou Huang3, Nitesh V. Chawla2, Zhenhui Li1

1Pennsylvania State University, 2University of Notre Dame, 3Tencent AI Lab
1{huaxiuyao,szw494,zul17}@psu.edu,2{czhang11,mjiang2,abotello}@nd.edu

3judyweiying@gmail.com, joehhuang@tencent.com

Abstract
Towards the challenging problem of semi-supervised node classification, there have
been extensive studies. As a frontier, Graph Neural Networks (GNNs) have aroused
great interest recently, which update the representation of each node by aggregating
information of its neighbors. However, most GNNs have shallow layers with a
limited receptive field and may not achieve satisfactory performance especially
when the number of labeled nodes is quite small. To address this challenge, we
innovatively propose a graph few-shot learning (GFL) algorithm that incorporates
prior knowledge learned from auxiliary graphs to improve classification accuracy
on the target graph. Specifically, a transferable metric space characterized by a node
embedding and a graph-specific prototype embedding function is shared between
auxiliary graphs and the target, facilitating the transfer of structural knowledge.
Extensive experiments and ablation studies on four real-world graph datasets
demonstrate the effectiveness of our proposed model.

1 Introduction
Classifying a node (e.g., predicting interests of a user) in a graph in a semi-supervised manner
has been challenging but imperative, inasmuch as only a small fraction of nodes have access to
annotations which are usually costly. Recently, graph neural networks (GNN) [7, 14] have attracted
considerable interest and demonstrated promising performance. To their essential characteristics,
GNNs recursively update the feature of each node through aggregation (or message passing) of its
neighbors, by which the patterns of graph topology and node features are both captured. Nevertheless,
considering that adding more layers increases the difficulty of training and over-smoothens node
features [7], most of existing GNNs have shallow layers with a restricted receptive field. Therefore,
GNNs are inadequate to characterize the global information, and work not that satisfactorily when
the number of labeled nodes is especially small.

Inspired by recent success of few-shot learning, from a innovative perspective, we are motivated to
leverage the knowledge learned from auxiliary graphs to improve semi-supervised node classification
in the target graph of our interest. The intuition behind lies in that auxiliary graphs and the target
graph likely share local topological structures as well as class-dependent node features [11, 8]. Yet
it is even more challenging to achieve few-shot learning on graphs than on i.i.d. data (e.g., images)
which exisiting few shot learning algorithms focus on. The two lines of recent few-shot learning
works, including gradient-based methods [4, 10] and metric-based methods [12, 15], formulate
the transferred knowledge as parameter initializations (or a meta-optimizer) and a metric space,
respectively. None of them, however, meets the crucial prerequisite of graph few-shot learning to
succeed, i.e., transferring underlying structures across graphs.

To this end, we propose a novel Graph Few-shot Learning (GFL) model. Built upon metric-based
few-shot learning, the basic idea of GFL is to learn a transferable metric space in which the label of a
node is predicted as the class of the nearest prototype to the node. The metric space is practically
characterized with two embedding functions, which embed a node and the prototype of each class,
respectively. Specifically, first, GFL learns the representation of each node using a graph autoencoder

NeurIPS 2019 Graph Representation Learning Workshop (GRL 2019), Vancouver, Canada.

𝒮𝒢#

𝒬𝒢#

𝑃𝐺𝑁𝑁

𝑃𝐺𝑁𝑁

𝑃𝐺𝑁𝑁

𝒉)* 𝒉)+

ℒ

. .
 .

. .
 .

. .
 .

𝐴𝐺𝐺.

𝑑

(b)

(a)

(b) Hierarchical Graph
Representation Gate

(a) Graph Structured
Prototype

ℒ0

(c)

(c) Auxiliary Graph
Reconstruction

Figure 1: The framework of proposed GFL.

whose backbone is GNNs. Second, to better capture global information, we establish a relational
structure of all examples belonging to the same class, and learn the prototype of this class by applying
a prototype GNN to the relational structure. Most importantly, both embedding functions encrypting
structured knowledge are transferred from auxiliary graphs to the target one, to remedy the lack
of labeled nodes. Besides the two node-level structures, note that we also craft the graph-level
representation via a hierarchical graph representation gate, to enforce that similar graphs have similar
metric spaces. The experiments on node classification problem demonstrate the effectiveness of GFL.

2 Preliminaries
Graph Neural Network A graph G is represented as (A, X), where A ∈ {0, 1}n×n is the adjacent
matrix, and X = {x1, . . . ,xn} ∈ Rn×h is the node feature matrix. To learn the node represetation for
graph G, an embedding function f with parameter θ are defined as:

H(l+1) =M(A,H(l);W(l)), (1)

whereM is the message passing function. After stacking L graph neural network layers, we can get
the final representation Z = GNN(A,X) = fθ(A,X) = H(L+1) ∈ Rh

′
.

The Graph Few-Shot Learning Problem In graph few-shot learning, we are given a sequence
of graphs {G1, . . . ,GNt} sampled from a probability distribution E over tasks [3]. For each graph
Gi ∼ E . we are provided with a small set of nsi labeled support nodes set Si = {(xsii,j , y

si
i,j)}

nsi

j=1

and a query nodes set Qi = {(xqii,j , y
qi
i,j)}

nqi

j=1. For each node j in query set Qi, we are supposed to
predict its corresponding label by associating its embedding fθ(A,xqii,j) : Rh → Rh

′
with represen-

tation (fθ(A,xsii,j), y
si
i,j) in support set Si via the similarity measure d. Specifically, in prototypical

network [12], the prototype cki for each class k is defined as cki =
∑

x
si
i,j∈S

k
i
fθ(A,x

si
i,j)/|S

k
i |, where

Ski denotes the sample set in Si of class k and |Ski | means the number of samples in Ski . For each
graph Gi, the effectiveness on query set Qi is evaluated by the loss Li =

∑
k L

k
i , where:

Lki = −
∑

(x
qi
i,j ,y

qi
i,j)∈Qk

i

log
exp(−d(fθ(A,x

qi
i,j), c

k
i))∑

k′ exp(−d(fθ(A,x
qi
i,j), c

k′
i))

, (2)

where Qk
i is the query set of class k from Qi. To achieve this goal, few-shot learning often includes

two-steps, i.e., meta-training and meta-testing. In meta-training, the parameter θ of embedding
function fθ is optimized to minimize the expected empirical loss over all historical training graphs,
i.e., minθ

∑Nt
i=1 Li. Once trained, given a new graph Gt, the learned embedding function fθ can be

used to improve the learning effectiveness with a few support nodes.

3 Methodology
In this section, we elaborate our proposed GFL whose framework is illustrated in Figure 1. We will de-
tail the three components of GFL, i.e., graph structured prototype, hierarchical graph representation
gate and auxiliary graph reconstruction.
Graph Structured Prototype In most of the cases, a node plays two important roles in a graph: one
is locally interacting with the neighbors that may belong to different classes; the other is interacting
with the nodes of the same class in relatively long distance, which can be globally observed. It

2

is non-trivial to model the relational structure among support nodes and learn their corresponding
prototype, we thus propose a prototype GNN model denoted as PGNN to tackle this challenge.

Given the representation of each node, we first extract the relational structure of samples belong
to class k. For each graph Gi, the relational structure Rki of the sample set Ski can be constructed
based on the number of k-hop common neighbors. Then, the PGNN is used to model the interactions
between samples in the Ski , i.e., PGNNφ(Rki , fθ(Ski)), where PGNN is parameterized by φ and then
we use j to indicate the j-th node representation (see part (a) in Figure 1).

cki = Pooln
ski

j=1(PGNNφ(Rki , fθ(Ski))[j]), (3)

where Pool operator denotes a max or mean pooling operator over support nodes and ns
k
i represents

the number of nodes in support set Ski .
Hierarchical Graph Representation Gate The above prototype construction process is highly
determined by the PGNN with the globally shared parameter φ. However, different graphs have their
own topological structures, motivating us to tailor the globally shared information to each graph.
Thus, we learn a hierarchical graph representation for extracting graph-specific information and
incorporate it with the parameter of PGNN through a gate function (see part (b) in Figure 1 and more
detailed structure is in Appendix A). Following [18], the hierarchical graph representation for each
level is accomplished by alternating between two level-wise stages:
I. Node Assignment In the assignment step, each low-level node is assigned to high-level community.
In level r , we denote the number of nodes as Kr, the adjacency matrix as Ar

i , the feature matrix as
Xr
i . The assignment matrix Pr→r+1

i ∈ RK
r×Kr+1

from level r to level r+ 1 is calculated by applying
softmax function on the output of an assignment GNN (AGNN) as follows:

Pr→r+1
i = Softmax(AGNN(Ar

i ,X
r
i)), (4)

II. Representation Fusion After getting the assignment matrix , for level r + 1, the adjacent matrix is
defined as Ar+1

i = (Pr→r+1
i)TAr

iP
r→r+1
i and the feature matrix is calculated by applying assignment

matrix on the output of a fusion GNN (FGNN), i.e., Xr+1
i = (Pr→r+1

i)TFGNN(Ar
i ,X

r
i). Then, the

feature representation hr+1
i of level r + 1 can be calculated as:

hr+1
i = PoolK

r+1

kr+1=1((Pr→r+1
i)TFGNN(Ar

i ,X
r
i)[k

r+1]), (5)

Then, to get the whole graph-specific representation hi, the representation of each level is aggregated
via an aggregator AGG, i.e., hi = AGG(h1

i , . . . ,h
R
i). Both mean pooling aggregator and attention

aggregator are used in this paper. Inspired by previous findings [16]: similar graphs may activate
similar parameters (i.e., parameter φ of the PGNN), we introduce a gate function gi = T (hi) to tailor
graph structure specific information. Then, the global transferable knowledge (i.e., φ) is adapted to
the structure-specific parameter via the gate function, i.e., φi = gi ◦ φ = T (hi) ◦ φ where ◦ represents
element-wise multiplication. gi = T (hi) = σ(Wghi + bg) maps the graph-specific representation hi
to the same space of parameter φ. Thus, PGNNφ in Eqn. (3) would be PGNNφi .
Auxiliary Graph Reconstruction In practice, it is difficult to learn an informative node represen-
tation using only the signal from the matching loss, which motivates us to design a new constraint for
improving the training stability and the quality of node representation (see part (c) in Figure 1). Thus,
for the node embedding function, we refine it by using a graph autoencoder and the reconstruction
loss is defined as follows,

Lr(Ai,Xi) = ‖Ai −GNNdec(Zi)GNNT
dec(Zi)‖2F , (6)

where Zi = GNNenc(Ai,Hi) is the representation for each node. Recalling the objective in Section 2,
we reach the optimization problem of GFL as minΘ

∑Nt
i=1 Li + γLr(Ai,Xi), where Θ represents all

learnable parameters. The whole training process (algorithm) of GFL is detailed in Appendix B.

4 Experiments
Dataset and Experimental Settings We evaluate our model performance on four tasks: (1) classi-
fying 4 research domains of authors using AMiner collaboration data [2]; (2) classifying 5 communi-
ties of posts using Reddit posts data [6]; (3) classifying 3 categories of papers using AMiner citation
data [2]; (4) classifying 3 subjects of papers using PubMed data [14]. The details of these datasets are
summarized in Appendix C. In this work, we follow the traditional K-way N -shot few-shot learning
settings [4, 12]. For each graph, N labeled nodes for each class are provided. The rest nodes are used
as query set. Like [7], the embedding structure is a two-layer graph convolutional structure (GCN)
with 32 neurons in each layer. The distance metric d is defined as the inner product distance (see
Appendix D for detailed hyperparameter settings).

3

Table 1: Comparison between GFL and other node classification methods on four graph datasets.
Performance of Accuracy±95% confidence intervals on 10-shot classification are reported.

Model Collaboration Reddit Citation Pubmed

LP [19] 61.09± 1.36% 23.40± 1.63% 67.00± 4.50% 48.55± 6.01%
Planetoid [17] 62.95± 1.23% 50.97± 3.81% 61.94± 2.14% 51.43± 3.98%

Deepwalk [9] 51.74± 1.59% 34.81± 2.81% 56.56± 5.25% 44.33± 4.88%
node2vec [5] 59.77± 1.67% 43.57± 2.23% 54.66± 5.16% 41.89± 4.83%
Base-GCN [7] 63.16± 1.47% 46.21± 1.43% 63.95± 5.93% 54.87± 3.60%

Finetune 76.09± 0.56% 54.13± 0.57% 88.93± 0.72% 83.06± 0.72%
K-NN 67.53± 1.33% 56.06± 1.36% 78.18± 1.70% 74.33± 0.52%
Matchingnet [15] 80.87± 0.76% 56.21± 1.87% 94.38± 0.45% 85.65± 0.21%
MAML [4] 79.37± 0.41% 59.39± 0.28% 95.71± 0.23% 88.44± 0.46%
Protonet [12] 80.49± 0.55% 60.46± 0.67% 95.12± 0.17% 87.90± 0.54%

GFL-mean (Ours) 83.51± 0.38% 62.66± 0.57% 96.51± 0.31% 89.37± 0.41%
GFL-att (Ours) 83.79± 0.39% 63.14± 0.51% 95.85± 0.26% 88.96± 0.43%

Baseline Methods For performance comparison of node classification, we consider three types
of baselines: (1) Graph-based semi-supervised methods including Label Propagation (LP) [19] and
Planetoid [17]; (2) Graph representation learning methods including Deepwalk [9], node2vec [5]
and Base-GCN [7]. Note that, for Base-GCN, we train GCN on each meta-testing graph with limited
labeled data rather than transferring knowledge from meta-training graphs; (3) Transfer/few-shot
methods including finetune, K-nearest-neighbor (K-NN), Matching Network (Matchingnet) [15],
MAML [4], Prototypical Network (Protonet) [12]. Each transfer/few-shot learning method uses the
same embedding structure as GFL. Detailed description of baselines can be found in Appendix E.
Overall Results For each dataset, we reported the averaged accuracy with 95% confidence interval
over meta-testing graphs of 10-shot node classification in Table 1. Both GFL-mean and GFL-
att achieve the best performance than all three types of baselines on four datasets, indicating the
effectiveness by incorporating graph prototype and hierarchical graph representation. In addition, as
a metric distance based meta-learning algorithm, GFL not only outperforms other algorithms from
this research line (i.e., Matchingnet, Protonet), but also achieves better performance than MAML,
a popular gradient-based meta-learning algorithm. We also conduct extensive ablation studies and
sensitivity analysis, which are reported in Appendix F and G, respectively.

5 6 7 8 9 10 11
Support Set Size (N)

77

79

81

83

85

Ac
cu

ra
cy

MAML
Protonet
GFL (Ours)

(a) : Collaboration

5 6 7 8 9 10 11
Support Set Size (N)

57

59

61

63

Ac
cu

ra
cy

MAML
Protonet
GFL (Ours)

(b) : Reddit

5 6 7 8 9 10 11
Support Set Size (N)

94

95

96

97

Ac
cu

ra
cy

MAML
Protonet
GFL (Ours)

(c) : Citation

5 6 7 8 9 10 11
Support Set Size (N)

87

88

89

90

Ac
cu

ra
cy

MAML
Protonet
GFL (Ours)

(d) : Pubmed
Figure 2: Effect of support set size, which is represented by the shot number N

Effect of Support Set Size In addition, we analyze the effect of support set size, which is repre-
sented by the shot number N . We select two representative few-shot learning methods: Protonet
(metric-learning based model) and MAML (gradient-based model). The results of each dataset are
shown in Figure 2a-2d. We can see when the support set size is small, Protonet performs worse than
MAML. The potential reason is that calculating prototype by averaging values over samples may be
sensitive to outliers. Thus, it requires more data to reduce the effect of outliers. By extracting the
relational structure among samples of the same class, our algorithm is more robust and achieves best
performance in all scenarios.

5 Conclusion
In this paper, we introduce a new framework GFL to improve the learning effectiveness on a new
graph by transferring knowledge from previous learned graphs. GFL improves metric-based few-shot
learning by integrating graph structure from local node-level to global graph-level. We conduct
extensive experiments and the results demonstrate the effectiveness of our proposed model on four
node classification tasks.

4

References
[1] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–

230, 2003.

[2] Aminer. https://aminer.org/, 2019.

[3] Jonathan Baxter. Theoretical models of learning to learn. In Learning to learn, pages 71–94.
Springer, 1998.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, pages 1126–1135, 2017.

[5] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD,
pages 855–864. ACM, 2016.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NIPS, pages 1024–1034, 2017.

[7] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[8] Danai Koutra, Vogelstein Joshua T., and Christos Faloutsos. Deltacon: A principled massive-
graph similarity function. In SDM, 2013.

[9] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social represen-
tations. In KDD, pages 701–710, 2014.

[10] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. ICLR, 2016.

[11] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. JMLR, 12(Sep):2539–2561, 2011.

[12] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NIPS, pages 4077–4087, 2017.

[13] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-dataset:
A dataset of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096,
2019.

[14] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[15] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. In NIPS, pages 3630–3638, 2016.

[16] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with
visual attention. In ICML, pages 2048–2057, 2015.

[17] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, pages 40–48, 2016.

[18] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In NIPS, pages 4805–4815,
2018.

[19] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label
propagation. Technical report, Citeseer, 2002.

5

https://aminer.org/

A Detailed Framework of Hierarchical Graph Representation Gate

In Figure 3, we illustrate the detailed framework of hierarchical graph representation gate (detailed
description of this component is in Section 4.2). Part (a) shows the basic block for learning hierarchical
representation {h1

i , . . . ,h
R
i }. The aggregator is illustrated in part (b), where the learnable query

vector qi is introduced to calculate the attention weight β1 · · ·βR. Note that, we only illustate the
attention aggregator. For mean pooling aggregator, we calculate the average value of h1

i , · · · ,hR
i as

the graph representation hi. Then, the graph representation hi is used to calculate gate gi by using a
fully connected layer with sigmoid activation in part (c).

𝑨𝒊𝟏, 𝑿𝒊𝟏

𝐴𝐺𝑁𝑁

𝑨𝒊𝟐, 𝑿𝒊𝟐

𝐹𝐺𝑁𝑁

…
𝑨𝒊𝑹,𝟏, 𝑿𝒊𝑹,𝟏

𝐴𝐺𝑁𝑁

𝑨𝒊𝑹, 𝑿𝒊𝑹

𝐹𝐺𝑁𝑁

𝒉𝒊𝑹

𝒉𝒊𝑹,𝟏

𝒉𝒊𝟐

𝒉𝒊𝟏

𝒒𝒊

𝛽0

𝛽0,1

𝛽2

𝛽1

𝒉𝒊 𝒈𝒊

(a)

(b)

𝐹𝐶5

(c)

…

Figure 3: The detailed framework of hierarchical graph representation gate: (a) basic block for repre-
sentation learning; (b) aggregator to aggregate hierarchical representations; (c) graph representation
gate construction.

B Meta-training Process of GFL

Algorithm 1 Training Process of GFL

Require: E: distribution over graphs; L: # of layers in hierarchical structure; α: stepsize; γ:
balancing parameter for loss

1: Randomly initialize Θ
2: while not done do
3: Sample a batch of graphs Gi ∼ E and its corresponding adjacent matrices Ai and feature

matrices Xi

4: for all Gi do
5: Sample support set Si and query set Qi
6: Compute the embedding fθ(Ai,Xi) and its reconstruction error Lr(Ai,Xi) in Eqn. (6)
7: Compute the hierarchical representation {h1

i , . . . ,h
R
i } in Eqn. (5) and gate gi

8: Construct relational graphs {R1
i , ...,RKi } for samples in Si and compute graph prototype

{c1
i , ..., c

K
i } in Eqn. (3).

9: Compute the matching score using the query set Qi and evaluate loss in Eqn. (2)
10: end for
11: Update Θ← Θ− α∇Θ

∑Nt
i=1 Li(Ai,Xi) + γLr(Ai,Xi)

12: end while

C Detailed Dataset Description

We use four datasets of different kinds of graphs: Collaboration, Reddit, Citation and Pubmed. (1):
Collaboration data: Our first task is to predict research domains of different academic authors. We

6

use the collaboration graphs extracted from the AMiner data [2]. Each author is assigned with a
computer science category label according to the majority of their papers’ categories. (2): Reddit
data: In the second task, we predict communities of different Reddit posts. We construct post-to-post
graphs from Reddit community data [6], where each edge denotes that the same user comments on
both posts. Each post is labeled with a community id. (3): Citation data: The third task is to predict
paper categories. We derive paper citation graphs from the AMiner data and each paper is labeled
with a computer science category label. (4): Pubmed data: Similar to the third task, the last task is to
predict paper class labels. The difference is that the citation graphs are extracted from the PubMed
database [14] and each node is associated with diabetes class id. The statistics of these datasets are
reported in Table 2.

Table 2: Data Statistics.

Dataset Collaboration Reddit Citation Pubmed

Nodes (avg.) 4,496 5,469 2,528 2,901
Edges (avg.) 14,562 7,325 14,710 5,199
Features/Node 128 600 100 500
Classes 4 5 3 3
Graphs (Meta-training) 100 150 30 60
Graphs (Meta-validation) 10 15 3 5
Graphs (Meta-testing) 20 25 10 15

D Detailed Hyperparameter Settings

For more detailed hyperparameter settings, the learning rate is set as 0.01, the dimension of hier-
archical graph representation hi is set as 32. For the hierarchical graph representation learning
structure, we follow the strategy in [18] that the number of nodes in a higher layer is half of that in its
consecutive lower layer. The specific values for the number of nodes in the 1st layer and the number
of layers are determined by the tuning process on the validation set. In our experiments, the number
of hierarchical layer R is set as 3 and the number of nodes in layer 2 and layer 3 are set as 64 and 32,
respectively. The reconstruction loss weight γ is set as 1.0. Additionally, in order to construct the
relational graph of few-shot labelled nodes for each class, we compute the similarity score between
each two nodes by counting the number of k-hop (k=3) common neighbors and further smooth this
similarity value by a sigmoid function. The computed similarity matrix is further fed into GNN for
generating prototype embedding. We implement all experiments using Pytorch1.

E Detailed Descriptions of Baselines

We detail three types of baselines in this section. Note that, all GCN used in baselines are two-layers
GCN with 32 neurons each layer. The descriptions are as follows:

• Graph-based semi-supervised methods:
– Label Propagation (LP) [19]: Label Propagation is a traditional semi-supervised learning

methods.
– Planetoid [17] Planetoid is a semi-supervised learning method based on graph embeddings.

We use transductive formulation of Planetoid in this paper.
• Graph representation learning methods:

– Deepwalk [9]: Deepwalk learns the node embedding in an unsupervised way. We concatenate
the learned node embedding and the node features, then feed them to the multiclass classifier
(using Scikit-Learn2). Few-shot node labels in each graph are available for training classifer.

– node2vec [5]: This method is similar to the Deepwalk while we use node2vec model to learn
node embedding.

– Non-transfer-GCN [7] In Non-transfer-GCN, we only train GCN on each meta-testing
network without transferring knowledge from meta-training networks.

1https://pytorch.org
2https://scikit-learn.org/stable/

7

• Transfer/Few-shot methods
– All-Graph-Finetune (AGF) In AGF, we train GCN by feeding each meta-training graph

one-by-one. Then, we can learn the initialization of GCN parameters from meta-training
graphs. In meta-testing process, we finetune the learned initialization on every meta-testing
graphs. The hyperparameters (e.g., learning rate) of AGF are the same as GFL.

– K-nearest-neighbor (K-NN) Similar as the settings of [13], we first learn the initialization
of GCN parameters by using all meta-training graphs. Then, in the testing process, we use the
learned embedding function (i.e., GCN) to learn the representation of support nodes and each
query node. Finally, we use k-NN for classification.

– Matching Network (Matchingnet) [15]: Matching network is a metric-based few-shot
learning method. Since traditional matching network focuses on one-shot learning, in our
scenario, we still use each query node representation to match the most similar on in support
set and use its label as the predicted label for the query node.

– MAML [4]: MAML is a representative gradient-based meta-learning method, which learn
a well-generalized model initialization which can be adapted with a few gradient steps. For
MAML, we set the learning rate of inner loop as 0.001.

– Prototypical Network (Protonet) [12] Prototypical network is a representative metric-based
few-shot learning method, which constructs the prototype by aggregating nodes belong to the
same class using mean pooling.

F Ablation Studies

Since GFL integrates three essential components (i.e., graph structured prototype, hierarchical
graph representation gate, auxiliary graph reconstruction), we conduct extensive ablation studies
to understand the contribution of each component. Table 3 shows the results of ablation studies
on each dataset, where the best results among GFL-att and GFL-mean are reported as GFL results.
Performance of accuracy are reported in this table. For the graph structured prototype, in (M1a), we
first report the performance of protonet for comparison since Protonet use mean pooling of node
embedding instead of constructing and exploiting relational structure for each class.

To show the effectiveness of hierarchical graph representation gate, we first remove this component
and report the performance in (M2a). The results are inferior, demonstrating that the effectiveness of
graph-level representation. In addition, we only use the flat representation structure (i.e., R = 1) in
(M2b). The results show the effectiveness of hierarchical representation.

For auxiliary graph reconstruction, we remove the decoder GNN and only use the encoder GNN to
learn the node representation in (M3). GFL outperforms (M3) as the graph reconstruction loss refines
the learned node representation and enhance the stability of training.

Table 3: Results of Ablation Studies. Accuracy scores on 10-shot node classification are reported.
We select the best performance of GFL-mean and GFL-att for GFL in this table.

Ablation Model Collab. Reddit Citation Pubmed

(M1a): use the mean pooling prototype (i.e., protonet) 80.49% 60.46% 95.12% 87.90%
(M1b): replace the gate with the Film modulation 82.86% 62.66% 95.42% 88.92%

(M2a): remove the hierarchical representation gate 82.63% 61.99% 95.33% 88.15%
(M2b): use flat representation rather than hierarchical way 83.45% 62.55% 95.76% 89.08%

(M3): remove the graph reconstruction loss 82.98% 62.58% 95.63% 89.11%

GFL (Ours) 83.79% 63.14% 96.51% 89.37%

G Sensitivity Analysis

G.1 Effect of Distance Functions d

In addition, we replace the distance function d in Eqn. (2) from inner product (used in the original
setting) for cosine distance. The results are reported in Table 4. Compared with inner product, the
similar results show that GFL is not very sensitivity to the distance function d.

8

Table 4: Effect of different distance functions d.
Method Collab. Reddit Cita. Pubmed

GFL (inner product) 83.79% 63.14% 96.51% 89.37%
GFL (cosine) 84.02% 62.95% 96.02% 89.25%

G.2 Effect of Different Similarity Functions for Constructing Relational StructureRk
i

We further analyze the effect of different similarity functions for constructing relational structure of
the graph prototype. Jaccard Index, Adamic-Adar [1], PageRank and Top-k Common Neighbors
(Top-k CN) are selected and the results are reported in Table 5. Note that, in previous results, we all
use Top-k CN as similarity function. The results show that GFL is not very sensitive to the similarity
on a dataset may be achieved by different functions.

Table 5: Effect of different similarity functions for calculating relational structure Rk
i . Results of

Accuracy are reported.
Method Collab. Reddit Cita. Pubmed

Jaccard 82.98% 62.71% 95.18% 88.91%
Adamic-Adar 83.70% 62.87% 95.49% 89.21%
PageRank 84.14% 63.08% 95.93% 90.02%
Top-k CN 83.79% 63.14% 96.51% 89.37%

9

	Introduction
	Preliminaries
	Methodology
	Experiments
	Conclusion
	Detailed Framework of Hierarchical Graph Representation Gate
	Meta-training Process of GFL
	Detailed Dataset Description
	Detailed Hyperparameter Settings
	Detailed Descriptions of Baselines
	Ablation Studies
	Sensitivity Analysis
	Effect of Distance Functions d
	Effect of Different Similarity Functions for Constructing Relational Structure Rik

