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Abstract

Neighborhood aggregation is a key operation in Graph Convolutional Network
(GCN). Sum and mean of the neighborhood information are two most popular
aggregation methods, but they have two main limitations: 1) can not treat each
neighbor differently, 2) and can not treat each feature within a neighbor’s feature
vector differently. In this paper, we propose a learnable aggregator by borrowing
idea from meta-learning. Specially, it trains a meta-learner in the aggregation
process to produce a specific mask for each neighbor, allowing the aggregator
to learn to assign different weights to different features within a feature vector.
We illustrate the strength of our method on both node classification and graph
classification task.
Key words: GCN, aggregator, meta-learning, mask.

1 Introduction

Graph convolutional network (GCN) is an effective neural network model for graphs that can
combine structure information and node features in the learning process [14]. It represents a node by
aggregating the feature vectors of its neighbors with fixed weights inversely proportional to the central
and neighbors’ node degrees. Later, some other aggregators were proposed: mean aggregator, LSTM
aggregator, pooling aggregator [7] and sum aggregator [20]. However, these aggregators are mostly
limited to predefined heuristics and assumption that connected nodes in the graph are likely to share
the same label [23, 3]. The heuristic aggregator and assumption might restrict modeling capacity, as
node can be connected with neighbors from different class and each feature within neighbor’s feature
vector plays different role for the central node’s representation learning.

We desire a more flexible and intelligent aggregator that can be: 1) adaptive to deal with various
neighborhood information in node-level and feature-level [19, 5]; 2) invariant to neighbors’ order
(real graphs mostly have no regular connectivity and natural ordering) [15]; 3) discriminative to graph
structures by mapping them to different location in the embedding space [20]; 4) explainable for the
aggregation results. The aggregator incorporates both graph structures and node features, which lead
results difficult to interpret [22].

Graph attention network (GAT) borrows the idea of attention mechanisms and can learn to assign
different weights to different neighbors in the aggregation process [19]. However, all individual
features in a feature vector are treated equally, which do not satisfy Desirable 1. Learnable graph
convolutional layer (LGCL) applies convolution operation in the aggregation process, which can
assign different weights to different features [5]. But, the convolution operation performs on reorga-
nized embeddings (selecting the d−largest values for each feature from neighbors), for the number of
adjacent nodes usually varies for different nodes in a graph. LGCL satisfies Desirable 1, but not fully
Desirable 2 and Desirable 4 (breaking the original correspondence between node features). The key
challenge is to design a flexible and learnable aggregator that can satisfy the mentioned desirables.

Meta-learning methods learn a meta-learner to extract meta-knowledge from a number of different
tasks and use it to assist in unseen tasks [18]. Here we adapt this idea to deal with the various
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neighborhood information in a graph. We treat different neighborhood information as different tasks
to train a meta-learner in the aggregation process, and it can learn some high-level rules (e.g., focusing
on the important neighbors and features for node representation learning) to guide the aggregator
to aggregate neighborhood information. Under this framework, we propose our method: learnable
aggregator for GCN (LA-GCN), which utilizes a given node and its neighbors to train a meta-learner.
It can produce a mask for each neighbor. Then we use Hadamard product to multiply the neighbor’s
feature vector with the corresponding mask in the aggregation process, allowing the aggregator learn
to assign different weights for different features in different neighbors.

Our contributions are summarized as follows: 1) we propose a framework for graph representation
learning by borrowing idea from meta-learning that unifies existing approaches, e.g., GAT, LGCL; 2)
we propose LA-GCN with a flexible and learnable aggregator that can treat both the node and features
within a feature vector differently, meanwhile satisfies the expected desirables. LA-GCN outperforms
state-of-the-art methods in semi-supervised node classification task and graph classification task; 3)
furthermore, we also analyze the learned mask to show the interpretability that are not well equipped
in existing works.

2 Background

Graph Convolutional Network. Kipf and Welling [14] proposed graph convolutional network
(GCN) as an effective graph representation model that can naturally combine structure information
and node features in the learning process. Let G= (V, E , X) denote an undirected graph with N nodes
vi ∈ V , edges (vi, vj) ∈ E , where i, j = 1, ..., N , an adjacency matrix A, and a feature matrix X.
The propagation rule of GCN can be summarized by the following expression:

h
(k)
i = σ(W(k)(h
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√
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where h
(k)
i is the representation of vi after k−layer GCN, W(k) ∈ RC×F is the learned weight

matrix, Ni is a set of nodes adjacent to vi, di and dj are the node degrees of node vi and node vi
respectively. We initialize h

(0)
i = Xi. A key part in the propagation is the aggregation process and

we define a GCN aggregator as fagg:
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A node’s representation captures the information within k-hop neighbors after k iterations of aggre-
gation, and this can be treated as a general neural message-passing process [6] or relational inductive
bias model [2].

Aggregator. Later, Hamilton et al. [7] proposed mean, LSTM, and pooling aggregators. Mean
aggregator simply takes an elementwise mean of h(k−1)

j (j ∈ Ni), LSTM aggregator applies LSTM
[9] to a random permutation of the neighbors and pooling aggregator applies an elementwise max-
pooling on the neighbors after a linear mapping. Mean and max-pooling aggregators are well-defined
functions as they are permutation invariant, but they can not always satisfy Desirable 2, which has
been proved in [20]. Xu et al. [20] proposed that sum aggregator (an injective function) is the most
expressive in graph representation learning.

The mentioned GCN, mean, LSTM, pooling and sum aggregators are all predefined heuristics. Some
strategies have been proposed to make the aggregator learnable. In GAT, the aggregator can be
formulated as: s

(k−1)
i = f

(k)
aga(h

(k−1)
j ) =

∑
j∈Ni

αijh
(k−1)
j , where αij is a learnable attention

coefficient that indicates the importance of vj to vi. However, all the features are treated equally
within the feature vector h

(k)
j , for each feature shares the same weight αij in the aggregation.

LGCL applies convolution operation on the reconstructed neighbors’ feature in the aggregation

s
(k−1)
i = f

(k)
agc(h

(k−1)
j , j ∈ Ni) = Cov(Ĥi

(k)
), where Ĥi

(k)
is the reconstructed neighbor’s feature

map (choosing the top-d values in each feature dimension from all the neighbors). The reconstruction
can achieve the transformation from graphs to grid-like data, but it breaks the original correspondence
between node features. The filter in the convolution process works on fix-sized feature map, and using
convolution in the aggregation process is not that suitable to learn from neighbors with variable-size.
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Figure 1: LA-GCN can be mainly divided into three steps: 1) train a meta-learner with a given node and its
neighbors’ feature vectors; 2) get the mask for each neighbor from the meta-learner; 3) aggregate the neighbors
(after multiplying the corresponding mask) to get the central node’s new representation.

3 LA-GCN.

Model: Our method is shown in Fig.1, and we replace the aggregator f (k)agg in Eq. 2 with f (k)agm, a
permutation-invariant function, that satisfies the desirables mentioned in Section 1. As far as we
know, sum aggregator is an injective function and the most powerful in GNNs, which could precisely
capture the graph structures [20].1 Instead of summing all the neighbors directly, we extend sum
aggregator as:

s
(k−1)
i = f (k)agm(h

(k−1)
j ) =

∑
j∈Ni

h
(k−1)
j ∗m(k−1)

j , (3)

where m
(k−1)
j is the mask learned by the meta-learner. The meta-learner can be a multi-layer

perceptrons (MLPs) [11, 10] or autoencoders [8, 13], and be trained on different tasks (each given
node, each given node’s neighbors or each given node with its neighbors in a graph).

In this paper, we train the meta-learner (an MLP with a single hidden layer) on a given node and its
neighbors ({ h

(k−1)
i , h(k−1)

j , j ∈ Ni}), and it is defined as following:

m
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where σ is the activation function, W(k)
m ∈ R2F×F is the weight matrix and ‖ denotes column-wise

concatenation. The update rule for vi is
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Our method has several interesting properties: 1) it can simultaneously assign different weights to
different neighbors (node-level attention) and features within a feature vector (feature-level attention)
in the aggregation process; 2) it allows for dealing with variable-size inputs for we use a shared
meta-learner for each node; 3) for it can be seen as an extension of sum-aggregator, which could
satisfy Desirable 3. 4) we can easily see which neighbors or features are important to the central node
by visualizing the learned masks (Desirable 4).

A general framework. Our framework is general and can unify GAT and LGCL. The meta-learner
in GAT is the self-attention strategy (a single-layer feed forward neural network), and it treats each
node as a task to learn coefficients between nodes (node-level attention). While, our method utilizes
both the central node and neighbors to train the meta-learner and it learns a mask for each neighbor
(both node and feature-level attention). GAT can be seen as a special case under our framework that
all the values in a mask is the same. The meta-learner in LGCL can be seen as the convolutional layer
and the learning task is a given node with neighbors’ information, but the convolutional layer is not
suitable to deal with graphs with no regular connectivity.

Computational complexity: A key part in our method is the meta-learner, and it is a shared model
by all nodes in a graph. So, the computation of the mask can be parallelized across all nodes. The
computational complexity of Eq. 5 is O(| E | ×C × F+ | E | ×2F × F ) and is on par with GCN

1Sum aggregator works better for graph classification. For node classification, sum aggregator can change
the feature’ scale and mean aggregator or GCN aggregator are more resealable for this task.

3



Table 1: Node classification accuracy (%)

Methods Cora Citeseer PubMed Reddit

GCN 88.0 77.8 86.8 93.0
GAT 80.4 75.7 85.0 –
FastGCN 85.0 77.6 88.0 93.7
GraphSAGE_mean 82.2 71.4 87.1 94.6
LGCL 86.9 77.5 84.1 –
MixHop 88.3 73.9 85.6 –

LA-GCN 89.1 % 78.7% 89.1% 95.1%

Table 2: Graph classification accuracy (%)

Methods MUTAG PROTEIN PTC

WL subtree 90.4 75.0 59.9
DCNN 67.0 61.3 56.6
PATCHYSAN 92.6 75.9 60.0
DGCNN 85.8 75.5 58.6
AWL 87.9 – –
GIN 89.4 76.2 64.6

LA-GCN 90.0 80.5 72.2
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Each row is the learned mask for each neighbor with 16-dimensional 
feature, the value means the 100 × weights for each feature.

Feature dimension
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Mask for Node 2175
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Figure 2: Visualization of the learned mask. The aggregator can focus on the important neighborhood
information (the neighbors from the same class, or some special features) with the learned mask. The values
showed in the heat map are 100 × the real values.

(O(| E | ×C × F )). As for the memory requirement, it grows linearly in the size of the dataset and
we perform mini-batch training to deal with this issue.

4 Experiments and conclusion.

We perform LA-GCN on two tasks: node classification and graph classification.

Datasets: We conduct node classification on three citation graphs (Cora, Citeseer and PubMed)
and one social network (Reddit), which have been widely used in [14, 4, 21, 7, 19, 5, 1]. For
graph classification task, we use 3 bioinformatics datasets [20]. For node classification, we split the
train/validation/test as [7, 4]. Following [20, 16], we utilize 10-fold cross-validation (using 9 folds
for training and 1 for testing). Please see Appendices A for more details.

Baselines and experimental setting. 1) For node classification, we compare against 6 strong
baselines: GCN [14], GAT [19], FasTGCN [4], GraphSAGE-mean [7], LGCL [5] and MixHop [1].
In our model, we first utilize one-layer GCN to reduce the dimension of the node feature and apply a
one-layer neural network as the meta-learner. 2) For graph classification, we report the results as in
paper [20]. Please see Appendices B for details of hyperparameters

Discussion. Results for node classification and graph classification are summarized in Table 1 and
Table 2. Our method can get competitive results for the two tasks. Besides, we analyse what the
meta-learner learned by visualizing the learned masks as shown in Fig 2. Central node 4 and its
neighbors 1016, 1025 and 2176 belong to the same class, and neighbors 1761, 2175 belong to other
class (class 2). The left table in Fig. 2 shows the learned mask for each neighbor. From the table, we
can see that neighbors (1016,1025,2176) from the same class are assigned more weighs (the values in
the learned mask) than the other two neighbors (1761, 2175) on the whole. Besides, each feature
within a feature vector is treated differently. This indicates that the meta-learner learns the expected
rules (focusing on the important neighbors and features) on how to aggregate the neighbors.

Conclusion: We proposed a framework that train a meta-learner for the aggregator and our method
outperform state-of-the-art methods on both node classification and graph classification tasks. It is
possible to implement our method (learn a flexible and adaptive aggregator) to other frameworks,
e.g., FastGCN [4], jumping knowledge networks [21], more recently GMWW [17] and MixHop [1].
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Appendices

A Datasets for node classification and graph classification.

The datasets for node classification and graph classification are summarized in Table 3 and Table 4.
For more details for the datasets, please refer to [14, 7] and [20].

Table 3: Overview of datasets for node classification.

Dataset Nodes Edges Features Classes Training Validation Testing
Cora 2,708 5,429 1,433 7 1,625 540 540

Citeseer 3,327 4,732 3,703 6 1,996 665 665
PubMed 19,717 44,338 500 3 1,1830 3,943 3,943

Reddit 232,965 11,606,919 602 41 152,410 23,699 55,334

Table 4: Overview of datasets for graph classification.

Datasets MUTAG PROTEINS PTC

Graphs 188 1,113 344
Classes 2 2 2

Avg nodes 78 39 26

B Hyperparameters.

For node classification. We compare against 6 strong baselines: GCN [14], GAT [19], FasTGCN
[4], GraphSAGE-mean [7], LGCL [5] and MixHop [1]. In our model, we first utilize one GCN layer
to reduce the dimension of the node feature to 64-dimension for Cora, PubMed and 128-dimension
for Citeseer and Reddit. Then we apply a one-layer neural network as the meta-leaner to learn the
masks for neighbors, whose input dimension is 128×64 (Cora, PubMed) and 256×128 (Citeseer and
Reddit). Throughout the experiments, we use the Adam optimizer [12] with learning rate 0.005 for
Cora and PubMed, 0.002 for Citeseer, 0.01 for Reddit. We fix the dropout rate to 0.5 for the hidden
layers’ inputs and add an L2 regularization of 0.0001. We employ the early stopping strategy based
on the validation accuracy and train 200 epochs at most. For Reddit, we use the mini-batch training
and the batch size (512)is set to be the same as FastGCN and GraphSAGE.

For a fair comparison, we also use the hidden layer size of 64 units for GCN on Cora, PubMed and
128 for Citeseer, which ensures the architecture is the same with ours model (except the meta-learner
part). We use the same architecture as in the original papers for GAT, LGCL and MixHop, for these
algorithms have many hyperparameters. The results for FastGCN and GraphSAGE are from FastGCN
[4], for we use the same training/validation/testing with Chen et al. [4]. We report the mean accuracy
of 15 runs with random weight matrix initialization.

For graph classification. For graph classification, we report the results for WL subtree, DCNN,
PATCHYSAN, DGCNN, AWL and GIN (sum-aggregation) as in paper [20]. For our method, the
learning rate is 0.005, the number of GCN layer is three, and MlPs have 2 layer and the hidden
dimension is 16 for MUTAG, PTC and PROTEINS. The batch size is 32 and bath normalization is
applied on every hidden layer.

6


	Introduction
	Background
	LA-GCN.
	Experiments and conclusion.
	Appendices
	Appendix Datasets for node classification and graph classification.
	Appendix Hyperparameters.

