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Abstract

The random walk process on network data is a widely-used approach for network
representation learning. However, we argue that the sampling of node sequences
and the subsampling for the Skip-gram’s contexts have two drawbacks. One is
less possible to precisely find the most correlated context nodes for every central
node. The other is not easily controlled due to several hyperparameters. Such two
drawbacks lead to higher training cost and lower accuracy due to abundant and
irrelevant samples. To solve these problems, we compute the adaptive probability
of random walk based on personalized PageRank, and propose an Adaptive Skip-
gram (ASK) model without random walk process and negative sampling. We
utilize k-most important neighbors for positive samples selection, and attach their
corresponding PPR probability into the objective function. We demonstrate the
improvement of our ASK model for network representation learning in tasks of link
prediction and node classification. The results achieve more effective performance
and efficient learning time.

1 Introduction
Network data is getting much attention due to modern issues like social media analytics, disease
infection, and knowledge database. Graph representation learning (GRL) is an essential task to distill
latent features from network data. While a network consists of a collection of links between nodes
in a non-Euclidean space, the common purpose of GRL is to convert the highly complex network
structure to a low-dimensional and explicit vector for each node, which is termed node embedding.
Eventually, the embedding vectors can be used for downstream network analysis tasks, such as link
prediction, node classification, and community detection.

To represent nodes in the context of network structure, the typical approach is matrix-based and
edge-based, such as matrix factorization [9] and LINE [10]. While the matrix-based approach is
costly in terms of computational efficiency and the edge-based model is shallow resulting in less
effect, random walk-based methods along with neural network learning are popular and effective
in recent years. DeepWalk [8] adopts the random walk mechanism and the Skip-gram model to
efficiently learn node embeddings. The main idea comes from language model in word2vec [5].
Based on the random surfer that walks through highly correlated local neighbors surrounded by each
target node, and Skip-gram model is able to truncate a context with inter-correlated words and updates
node embeddings. node2vec [3] presents a biased random walk controlled by the hyperparameters of
depth-first and breadth-first search. GENE [1] considers the group labels from the random walk’s
neighbors to preserve more information in node embeddings. DDRW [4] jointly optimizes the
classification objective and the objective of random-walk-based embedding entities for better node
classification. Extended studies further aim at learning node embeddings in attributed networks, in
which ANRL [11] and DANE [2] are random walk-based approaches that also need the Skip-gram
model. In short, one research direction of GRL is incorporating the Skip-gram model with random
walk, which is widely validated being useful.
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In this work, we aim to revisit the Skip-gram model with random walk, and show how to improve
its representation capability for network data. We argue that a random walk-based sampling-based
method is easily influenced by random noise and several hyperparameters such as number of walks
per node, walk length, and context size. These factors lead to the requirement of more learning
samples, tedious hyperparameter tuning, and most importantly, the selection of irrelevant context
nodes for every central node. It is because that the truncated context with the fixed length is not
capable to depict the topological correlation (e.g., proximity) between the central node and each
context node. Besides, the sampling frequency distribution of nodes occurring in the target’s context
would be less precise as the number of the samples is not enough. If we try to sample more samples
to improve accuracy, we have to create the additional cost during training model. Therefore, we need
a more precise mechanism to select representative neighbors for every node. This would be achieved
by the estimation of adaptive probability in random walk process, along with some incorporation into
the Skip-gram model.

To deal with the aforementioned issues, we leverage personalized PageRank [7] (PPR) that represents
the convergent probability from root (central node) to any other nodes along a randomly sampled path.
We can consider such a probability as the degree of correlation between two nodes as well as the exact
node frequency in sampled node sequences. To be specific, by combining the PPR probability and the
random walk process, we can derive the adaptive random walk probability indicating the structural
correlation between two nodes so that we can accordingly select the most significant context nodes
for every central node. Eventually by incorporating PPR into Skip-gram model, we develop the
Adaptive Skip-gram (ASK) model.

The contribution of this work is three-fold. First, we simplify the complex random walk process by
the probability of personalized PageRank. The hyperparameters of the original random walk in Skip-
gram model can be combined as one. Second, technically, we improve the Skip-gram model via the
estimated probability by proposed Adaptive Skip-gram (ASK) model, which emphasizes and exploits
the correlation between nodes. Our model would precisely learn the correlation, and does not require
the negative sampling that could lead to misleading embeddings and increase computational cost.
Third, the experiments conducted on three different datasets in GRL tasks exhibit the improvement
of our Adaptive Skip-gram model in link prediction and node classification. We also suggest an
approximated version of the Adaptive Skip-gram model that can be used to achieve efficient but
similar performance in the limited environment.

2 The Proposed Methods
2.1 Personalized PageRank (PPR)
Given a networkG = (V,A), where V is the node set with n nodes (|V | = n),A is the adjacency
matrix. A personalized PageRank value can be seen as the probability from a certain root r to another
node v via a random walk-like process. The probability updating equation of personalized PageRank
(PPR) is given by π(n)

r = (1− α)Hπ(n−1)
r + αer, where π(n)

r is the probability vector from root
r to each node at n-th step, H = D−1A is the normalized adjacency matrix based on A and the
degree matrixD. In addition, α ∈ [0, 1] is the restart probability, and er is the one-hot encoding for
the root. After some reformulation, the PPR matrix Π can be described as Π = α(I − (1−α)H)−1,
where Πij means the probability of going to the node j from the root i. Note that we will use “root”,
“central node” and “target” interchangeably throughout this work.

2.2 Adaptive Skip-gram Model
Typical network representation learning methods with the Skip-gram model and random walk, such
as node2vec [3] and DeepWalk [8], have three common phases. It contains sampling node sequences
by random walk, generating contexts, and the Skip-gram model. The second is composing contexts
of every node by setting central nodes and neighboring nodes from left to right in the derived node
sequences. The third is applying the Skip-gram model. We argue such a process cannot precisely
extract significant contexts for each node. It is because the random walk is not personally performed
to generate the contexts for a central node. That said, the contexts, sampled via random walk, may be
correlated with the central node. To be more specific, for nodes with high proximity scores to each
other in a densely-connected community, they may not be each other’s context. Repeated independent
sampling via random walk from any nodes lead to such kind of outcome.

We aim at exploiting the probability values derived from personalized PageRank (PPR) to generate
the contexts of every node. Since PPR values reflects the proximity degree from a root node to
any other nodes in the network, we propose to leverage PPR for generating more representative
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contexts so that the Skip-gram model can be constructed to produce better node embeddings. We
will generate representative contexts by selecting top-k neighbors that possess the highest proximity
values to the root/central node. In addition, we also want to simplify the process by allowing only
one hyperparameter, rather than three typical hyperparameters, including context size, number of
walks, and length of walk. The context size (i.e., number of contexts) can be regarded as the demand
of the number of contexts to explain the central node. It should be proportional to the density and
size of the central node’s neighborhood. Hence, we make the parameter k play a role representing the
maximum needed context size for learning a central node’s embedding.

To estimate k, we need to figure out the occurrence frequency of every node in all random walk
generated sequences. We think PPR can also be considered as the probability of sampling a node
of any generated infinite-length sequence from the root. The summation of the scaled probability
from all nodes to any node j can be simply regarded as the node frequency in all sequences, given
by fj =

∑n
i=1(Πij)/n. Given the average context size ae as a hyperparameter used to obtain

k, the total number of contexts for all nodes would be ae × n. Then the expected context size
for each node can be derived as a vector: ae × n × fj = ae

∑n
i=1(Πij). We choose k to be the

maximum expected context size for each node, given by maxj(ae
∑n

i=1 Πij). The next step is
to attach the subsampling mechanism into the derivation of k. The subsampling in the original
Skip-gram model utilizes the discarding probability 1− (t0(fw)

−1 +
√
t0(fw)

−0.5) in [6], where
t0 is a chosen threshold (typically 10−5), and fw is frequency vector of each word in all sentences.
We have obtained the node frequency vector fj = (

∑n
i=1 Πij)/n. Therefore, the subsampling

probability would be psub = t0(fj)
−1 +

√
t0(fj)

−0.5, which smooths the sampling probability of
high frequency nodes. As a result, the maximum expected context size with subsampling is given
by k = maxj(aefj � psub), where � is Hadamard product. Such selection of k-most significant
context nodes, along with PPR, simplifies the context generation and its hyperparameters.

We incorporate the Skip-gram model with the derived expected context size aefc � psub. Consider
the target node t and its k-most significant context nodes, we reconstruct the Skip-gram model to
model the importance of each of its neighbors through PPR. Recall the original objective function∑

c∈context(t) log(σ(v
T
t vc)) for a pair of target t and its context node set context(t), where vt

is the embedding for node t, and σ is the logit function. We replace original context nodes with
nodes possessing k highest values in the subsampling PPR value matrix, given by {Πsub}t∗ =
{aeDiag(fc � psub)Π}t∗, where Diag(v) is a diagonal matrix with diagonal entries equal to a
vector v. In other words, the values in PPR matrix is used in the objective function to point out which
are significant neighbors. Eventually the objective of the modified Skip-gram model is given by:∑

c∈Tk(t)
log(σ(vTt vc)){Πsub}tc, where Tk(t) is the set of k-most significant nodes of the target t.

In short, our model is learned by k context nodes of each central node. The proposed PPR-enhanced
objective not only emphasizes the importance of context nodes without additional cost, but alleviates
the problem of choosing irrelevant neighbors as contexts. Thus less correlated nodes in terms of
proximity could be pushed away from one another in the learned embedding space. To some extent,
such an effect is originally generated through negative sampling, and as a by-product in our model.
Therefore, we choose not to perform negative sampling in our model.

2.3 An Approximated Approach for PPR
Since the derivation of PPR matrix requires O(n3) time complexity, our adaptive Skip-gram model
may be less efficient when the network is large scale. Hence, we aim to provide an efficient alternative
for the estimation of PPR matrix. Consider the inverse part of PPR matrix (I− (1−α)H)−1 = P−1.
The normalized matrix with bounded row sum (i.e.,

∑
j(1− α)Hij < 1) satisfies ||(1− α)H|| < 1.

Therefore, P can be approximated by the convergent sum of Neumann series limm→∞
∑m

i ((1−
α)H)i. Given a small m, the complexity of the approximated PPR matrix would be decreased a lot
due to the sparsity ofH . Besides, ((1− α)H)i can be regarded as the i-order proximity. Therefore,
the approximated PPR matrix with a small m is capable to cover most of information for modeling.

3 Experiments
We conduct experiments to evaluate the effectiveness of our adaptive Skip-gram model for network
representation learning. Three publicly available network datasets, Cora, Citeseer and Pubmed 1

are employed. The data sizes in (#nodes, #edges) are (2708, 10556), (3312, 9196), (19717, 88651),

1Datasets available via https://linqs.soe.ucsc.edu/data
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Table 1: AUC scores and time cost (seconds) for link prediction.
Cora Citeseer Pubmed

SK 0.8902±0.0093 (123.00) 0.9135±0.0080 (147.30) 0.9340±0.0030 (264.01)
ASK 0.9262±0.0053 (19.53) 0.9387±0.0065 (22.04) 0.9399±0.0023 (242.94)
AASK (5) 0.8965±0.0091 (18.18) 0.9015±0.0101 (21.09) 0.9276±0.0027 (162.36)
AASK (10) 0.9110±0.0073 (19.73) 0.9168±0.0053 (21.44) 0.9360±0.0015 (242.46)
AASK (20) 0.9196±0.0035 (22.83) 0.9310±0.0094 (22.70) 0.9395±0.0015 (433.79)

Table 2: #(Positive pair) and the detailed time cost for link prediction.
Cora PT(s) TT(s) Citeseer PT(s) TT(s) Pubmed PT(s) TT(s)

SK 3.6E+05 8.68 114.33 4.8E+05 8.88 138.39 7.0E+06 63.79 200.22
ASK 3.8E+05 1.32 18.21 3.4E+05 1.62 20.42 2.4E+06 114.52 128.42
AASK (5) 3.5E+05 0.88 17.30 3.1E+05 0.91 20.18 2.1E+06 33.20 129.15
AASK (10) 3.7E+05 1.91 17.82 3.2E+05 1.20 20.24 2.2E+06 114.97 127.49
AASK (20) 3.8E+05 4.64 18.18 3.3E+05 2.25 20.45 2.3E+06 305.21 128.58

respectively. We randomly choose 70%, 10%, and 20% edges as the training, validation, and
testing sets. We also ensure the network is connected. The tasks include link prediction and node
classification. We compare the performance for the original Skip-gram model (SK) with biased
random walk [3], our Adaptive Skip-gram model (ASK), and PPR-Approximated Adaptive Skip-
gram model (AASK(m)), where the order m of the Neumann series is given by three different sizes
{5, 10, 20}. After obtaining the node embeddings, we use Hadamard product to derive the embedding
vectors of node pairs. Then, we utilize logistic regression as the classifier and the area under the ROC
curve (i.e., AUC score) as the evaluation metric. Due to page limit, the settings of hyperparameters
and the results of node classification are provided in the supplementary material.

The results of link prediction are shown in Table 1 and Table 2. Table 1 shows AUC scores and time
cost in seconds. Table 2 exhibits the number of training pairs without negative samples, and the
detailed time in processing Time (PT) and training Time (TT). PT is the time cost of random walk
process or PPR computation, and TT records the time from the first epoch to the epoch where the
loss is convergent.

In Table 1, the results show both of ASK and AASK with higher m lead to better performance
on AUC scores than SK. We think it is because we consider PPR to select representative contexts.
Regarding the AASK, the time cost would increase dramatically and surpass than ASK because
the iteration matrix is getting non-sparse. It suggests that AASK with m = 5 or 10 can be more
appropriate than ASK when the cost of time is under the restriction.

In Table 2, it clearly demonstrates that random walk efficiently captures the network structure,
especially for larger networks (i.e., PT on Punmed). Such results imply that the performance of
random-walk sampling model is highly depended on the number of repetitive sampling. Besides, it
also affects the time cost of the following training step. Instead, ASK utilizes the PPR probability
weighting in the objective so that the learning volume of each epoch can be reduced.

4 Discussion
We design a more efficient and effect Skip-gram model ASK that requires no random walk for network
representation learning. ASK overcomes the problems of the decision of multiple hyperparameters and
non-efficient training for the original Skip-gram model. Since the hyperparameters, such as number
of walks, and walk length, can influence on the performance, we derive the adaptive probability
based on PPR, which is equivalent to the random walk process, to avoid the complex sampling
process. Besides, the Adaptive Skip-gram model via the estimated probability of k-most significant
nodes would precisely make the highly-correlated nodes close, and therefore the objective function
can quickly achieve the convergence without negative sampling and even have better performance.
We also consider an approximated method as a light version of Adaptive Skip-gram model with
using small m, which has an efficient performance when the running environment is limited. The
proposed Adaptive Skip-gram model can be seamlessly used for random walk Skip-gram based
network representation learning models, such as node2vec and DeepWalk so that the efficiency and
the effectiveness can get boosted.
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A Hyperparameters of SK and ASK for Link Prediction
The dimensionality of node embedding vector is set 128 for all methods, and all of models are trained
by Adam optimizer with learning rate = 0.001. For the setting of SK, we set length window size
= 5, the number of repeating walks = 1, and the walk length = 80 for random walk process. The
number of negative samples is 20 for Cora and Citeseer and 5 for Pubmed.

For the settings of ASK and AASK, we set the default expected average context size ae = 25, and
the restart probability of PPR is set as α = 0.05 for Cora and Citeseer and 0.07 for Pubmed.

B Convergence Analysis for SK and ASK
We analyze the convergence of SK and ASK. We also discuss the disadvantages of SK that our ASK
can overcome. In Figure B.1, the testing AUC scores for link prediction on Cora data, and the loss
of ASK and SK are displayed in (a) and (b), respectively. The vertical lines in the figures indicate
the timestamps of the epoch of SK at 25.3 (sec) and 50.4 (sec) as the beginning of the 2-nd epoch
and the 3-rd epoch. In Figure B.1a, we can clearly observe that the convergent time of ASK is less
than one epoch of SK but SK would not start growing until the 2-nd epoch. We think that SK needs
to balance the effect between the positive loss and negative one, as first shown in Figure B.1b. In
the 1-st epoch, the model makes the negative loss decrease, but the positive loss is retained at the
same level, and then focus on reducing the positive loss in the next epochs. In other words, since
the correlated nodes are still be far away from each other, the accuracy would not be raised at the
beginning. Though negative sampling help estrange the non-correlated nodes, it still has a trade-off
in delaying the training efficiency. Our ASK utilizes a more precise selection of positive samples,
and therefore avoiding the undesired effect of negative sampling.
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Figure B.1: Convergence Analysis of SK and ASK.

C Label Classification of SK and ASK .
We also conduct node label classification task for SK and ASK. The number of labels for Cora,
Citeseer and Pubmed are 7, 6 and 4, respectively. We first learn node embeddings from the network,
and then employ one-vs-rest logistic regression classifier with L2 regularization on randomly select
training and testing samples. The percentage of training set is varied from 10% to 90%. We utilize
Micro-F1 and Macro-F1 as the evaluation metrics. Higher scores indicate better performance. The
results of scores and time cost are shown in Figure C.2 and Table C.3. According to the scores,
ASK has a slight improvement in accuracy for small networks, and the performance of ASK and
SK on Pubmed are close because the sampling distribution for larger networks would be more
well-approximating. It can be also apparently found that the run time of our ASK is significantly
less than SK. Such results again prove the efficiency of ASK. In details, during the training time, the
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time cost of ASK and SK are dropped. We think classification is the uncomplicated version of link
prediction, which only needs to realize the relationship between nodes and rare labels. Therefore, the
model can recognize the labels by learning the shallow structure. Especially, our PPR scores offer
more significant candidates, so the time cost is clearly decrease.
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Figure C.2: Results of node classification for SK and ASK.

Table C.3: Total time cost in seconds, and the detailed time cost for node classification.
Cora PT(s) TT(s) Citeseer PT(s) TT(s) Pubmed PT(s) TT(s)

SK 107.06 8.23 98.83 130.1 9.46 120.64 230.32 71.38 158.94
ASK 4.78 1.24 3.53 5.57 1.57 4 143.42 120.77 22.65
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