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Background

Most real-world problems are inherently time-variant, and yet temporal information is usually ignored
by graph representation learning models [Bronstein et al., 2017, Hamilton et al., 2017]. This is often
due to the high complexity required to model time-dependent relationships. However, leveraging this
additional information is crucial to capturing many key interactions.

We define the problem of dynamic graph representation learning in continuous time, with dynamic
graph structure. This graph is sampled from a continuous distribution G ∈ G(t) with G0 = G(t = t0)
as a boundary condition. Each snapshot Gt = (V, Et) is a weighted graph with a shared node set
V , an edge set Et, and weighted adjacency matrix At at time t. Unlike some previous work that
assumes links can only be added over time, we allow for link removal. Continuous dynamic graph
representation learning aims to learn latent representations etv ∈ Rd for each node v ∈ V at time t,
such that etv preserves both the local graph structures centred at v and its evolutionary behaviours
prior to time t.

Several methods that tackle different variations of this problem have been proposed in the literature.
JODIE [Kumar et al., 2019] is a recurrent neural network that predicts instance trajectories for
bipartite interactions. CTDNE by Nguyen et al. [2018] has advantages; it works on both directed
and undirected graphs. However, it does not generalise to heterogeneous networks and makes use of
random-walk methods in its current form, which has known limitations [Ribeiro et al., 2017]. Non
random walk based methods [Veličković et al., 2018] have also been extended to incorporate temporal
information [Opolka et al., 2019]. Spatial Temporal Graph Convolutional Networks [Yan et al.,
2018] utilise graph convolutional networks to join spatial edges and temporal edges in a supervised
setting. However, these methods are designed to work with discrete-time sampling and are not always
naturally extended into continuous time representations. We refer the interested reader to reviews by
Holme and Saramäki [2012] and Casteigts et al. [2012] for more comprehensive discussions.

An application in travel

An example use case for continuous graph representations is node embedding in a live travel network.
The network consists of transport hubs (node set, V) connected together by routes (edge set, Et)
that have time-dependent properties. Modelling the continuous time aspects of the graph allows us
to capture the effects of high-frequency intra-day changes in the network as well as low-frequency
changes, assuming sufficient sampling frequency in the data.

A learned representation could be used to augment a recommender system to provide travellers with
better personalised suggestions for destinations and travel itineraries. Recommender systems are
well suited to be framed as graph learning problems [Monti et al., 2017, Ying et al., 2018], therefore,
framing the problem end-to-end as graphs.
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