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Abstract
We present an unsupervised algorithm for embedding graphs into a hierarchy of
continuous features that separate local isomorphism classes. The approach incorpo-
rates group representation theory and the bispectrum, a third-order polyspectrum
that is a complete invariant for small graphs, although any graph invariant can
be used in the method. As a direct application, we compute a structural distance
metric between organic molecules from the QM9 dataset.

1 Introduction

Many graphs in nature contain structural similarities at multiple scales. Organic molecules, for
example, are composed of smaller distinctive fragments referred to as functional groups. Proteins,
similarly, are compositions of amino acids. Following (Milo et al., 2002), we refer to these distinctive
connectivity patterns as graph motifs.

Determining the exact presence and distribution of motifs in a set of graphs is tantamount to the
NP-complete subgraph isomorphism problem. However, for real-world applications, the subgraph
isomorphism problem is neither a suitable nor desirable formulation. Graphs obtained from data
typically involve both noise on edge weights and labelling ambiguities (permutations of vertex labels),
which make computing exact matches untenable. Additionally, it is significantly more powerful in
practice to construct a continuous representational space whose metric reflects structural similarities
rather than obtain a binary solution to a decision problem. An unsupervised approach is also often
desired, as labeled data is highly limited for many tasks involving graph-structured data.

We advocate the structural graph embedding approach: Given a graph, compute a smooth map β
to a hierarchical feature space Φ that collapses isomorphic neighborhoods and maps nodes with
similar surrounding motif structure to similar features. The particular embedding we propose here
incorporates the bispectrum from harmonic analysis and group representation theory (Tukey, 1953;
Gourd, Gauthier, and Younes, 1989; Sadler and Giannakis, 1992; Kakarala, 1993; Risi Kondor and
Borgwardt, 2008) although other graph invariants (e.g. Laplacian spectrum) can be used.

Our algorithm, NODE2MOTIF, combines graph invariants with message passing to define a continuous
node embedding that identifies isomorphic sub-structures and provides a hierarchical, invariant metric
over graphs. We illustrate the method’s utility on pedagogical examples and the QM9 dataset.

2 Background

An undirected weighted graph G on v nodes V = {1, 2, . . . , v} is defined by a real symmetric
adjacency matrix AG = W = [Wij ]

v
i,j=1 ∈ Rv×v that encodes the strength of edges between pairs
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of nodes. Consider the adjacency matrix A = ANi corresponding to a neighborhood Ni of node
i. We seek a map β(A) = Φ ∈ Rd that sends isomorphic A to the same point in feature space Φ
(i.e., β(A) = β(PAP>) for all permutation matrices P ∈ {0, 1}v×v); such a map is called a graph
invariant. Additionally, we desire this map to send non-isomorphic subgraphs to distinct points; i.e.,
the map is a complete invariant. Finally, we wish for a metric in feature space Φ to reflect structural
similarity; that is, nearby points in Φ should correspond to graphs that are nearly isomorphic.

One widely used graph invariant is the graph spectrum, which consists of the eigenvalues of a matrix
representation of a graph. Commonly, the matrices used are W or the graph Laplacian L = D −W ,
where D is the diagonal matrix of vertex degrees. The spectrum is invariant to permutation similarity,
as eigenvalues are invariant to change of basis. However, it is not a complete invariant as many sets
of graphs are non-isomorphic but cospectral; see (Van Dam and Haemers, 2003) and Fig. 1.

Original Space Spectral Space Bispectral SpaceOrbits of Isomorphic Graphs

Figure 1: Graph Spectra. Noise and random relabelling applied to 9 graphs (center right) with
same Laplacian spectrum, projected into PCA space using features: (far left) adjacency matrices,
(center left) Laplacian spectrum, and (far right) graph bispectrum. Spectral features collapse the nine
example graphs to one cluster, whereas the bispectrum separates non-isomorphic classes.

We also onsider an alternative invariant—the graph bispectrum—which is defined using the represen-
tation theory of the symmetric group Sv acting on graphs (R. Kondor, 2007; R. Kondor, 2008). Let
Irr(Sv) denote inequivalent irreducible representations of Sv . We assume that ρ ∈ Irr(Sv) are also
unitary representations (i.e., ρ−1 = ρ∗, with ρ∗ the conjugate transpose), which can be made the case
for any finite group. Intuitively, these ρ are the “fundamental frequencies" of the group. In particular,
for Z/nZ (the group of integers modulo n) these are the classical discrete Fourier frequencies.

Definition 2.1. Graph bispectrum. Given a weight matrix W and ρi, ρj ∈ Irr(Sv), the graph

bispectrum βij(W ) is the matrix: βij(W ) = C∗ij(Ŵ (ρi)⊗ Ŵ (ρj))
∗Cij

(⊕
φ∈Iij Ŵ (φ)

)
.

Here, Ŵ is the generalized Fourier transform of W , the multiset Iij consists of those representations
in Irr(Sv) that appear in the decomposition of ρi ⊗ ρj into irreducible representations, and matrices
Cij are the corresponding change of basis (usually called the Clebsch-Gordan matrices; important
also in physics). For each pair i and j, the bispectrum βij is a graph invariant.

All unweighted, undirected graphs on 6 nodes or fewer are identified up to isomorphism using the
graph bispectrum; that is, the bispectrum is a complete invariant for graphs up to six nodes. Notably,
all cospectral, non-isomorphic graphs on 7 nodes have distinct bispectra. Thus, the bispectrum
provides a powerful alternative representational space to distinguish motifs.

3 NODE2MOTIF

Using a local graph invariant, we construct an algorithm for embedding nodes from a labelled
weighted graph into a feature space that is invariant to permutations of neighborhood structure. The
basic object we compute over is a generalization of the adjacency matrix that incorporates node and
edge labels. For a graph G with nodes i having labels Li ∈ C (e.g. atom type) and labeling function
Γ(Li, Lj) ∈ C, we define the labeled adjacency matrix AG(i, j) = Γ(Li, Lj) ·Wij .

Given a node i in graph G, the 1−hop neighborhood Ni is the subgraph of vertices that are connected
to i, as well as edges between all such vertices. We compute first an embedding for i as the graph
invariant of the labeled adjacency matrix of Ni; that is, Φ0

i = β(ANi
) (for unlabelled graphs, we set

Γ = 1). Embeddings are also computed for k iterations, where, after the zeroth iteration, labeling is a
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function of the previous embedding: Γ(Φk−1i ,Φk−1j ). This iterative strategy resembles “message-
passing" (Hansen, 1970); as k increases, the embeddings of more distant nodes are incorporated.

Algorithm 1: Node2Motif
1 Input:
2 Labeled graph G = (V,E); Labeling function Γ; Labeled adjacency matrix AG; Iterations K.
3 Output:
4 Node embeddings Φki for i ∈ V and k ∈ {0, 1, . . . ,K}.

5 for k in {0, 1, . . . ,K} do
6 for i in V do
7 Ni = 1-hop neighborhood of vertex i in AG;

8 Φki = β(ANi
);

9 end
10 for all i, j do: AG(i, j) = Γ(Φki ,Φ

k
j ) ·Wij ;

11 end

For the purposes of this work, we use the bispectrum graph invariant and choose the following initial
labeling function. Node and edge types are assigned uniform random numbers in [−1, 1]. For a
connected pair of nodes, the real component of Γ is the product of the node labels, and the imaginary
component is the edge label. For the next iterations, the labeling function is the product of the first
(complex) principal component (over all graphs in a dataset) of the embeddings of node i and node j.

4 Related Work

The worst-case time complexity for identifying isomorphisms of unweighted graphs is unknown
although several algorithms exist (Darga, Sakallah, and Markov, 2008; McKay and Piperno, 2014;
Babai, 2016). These are limited for data analysis, though, as they do not directly capture approximate
iso-/automorphisms and do not provide a metric for computing similarity on graphs.

Several methods also exist for embedding graphs. Most are based on random walks or global graph
spectra, and are suited for identifying community structure, e.g. (Perozzi, Al-Rfou, and Skiena,
2014; Risi Kondor and Pan, 2016; Grover and Leskovec, 2016). Somewhat similar to our approach
are (Shervashidze et al., 2011; Neumann et al., 2016), which also propagate information iteratively.
GraphWave (Donnat et al., 2018) is notable for emphasizing structural similarity between vertices.

Graph convolutional neural networks (GCNNs) provide a promising alternative for learning con-
tinuous representations on graphs. In many approaches to GCNNs, invariance to node relabeling
is achieved through summation or pooling of the vector representations of neighboring nodes (Wu
et al., 2019). Summation is indeed invariant to relabeling. However, it is too invariant, as it does
not preserve local connectivity structure. In line with recent contributions (Kondor et al., 2018), we
incorporate group representation theory to find feature spaces that preserve symmetries.

5 Experiments & Results

We present example embeddings on two small graphs and close with an application to molecules.

Orbit Partitions. Structural similarity between vertices in a graph is formalized by the orbit partition.
The automorphism group of edge-preserving bijections acts on a graph to permute its vertex labels.
Two vertices u, v lie in the same orbit iff there is an automorphism which maps u 7→ v. The orbits of
a graph form its orbit partition: an equivalence relation for structurally identical vertices.

There is no known algorithm that computes the orbit partition of a graph in polynomial time.
Computing the orbit partition is closely related to two important problems whose computational
complexity is unknown: the problem of determining whether two graphs are isomorphic, and the
problem of determining whether a graph has a nontrivial automorphism (Lubiw, 1981). We relax
the problem of computing the orbit partition of a graph into a structural embedding problem and ask
whether NODE2MOTIF embeddings distinguish orbit partitions in small graphs.
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(a) NODE2VEC
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(b) GRAPHWAVE
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(c) NODE2MOTIF

Figure 2: Identifying Orbit Partitions. Node embeddings for (a) NODE2VEC, (b) GRAPHWAVE,
and (c) NODE2MOTIF. Embeddings are clustered and nodes are colored accordingly.

Fig. 2 compares embeddings learned by NODE2VEC, GRAPHWAVE, and NODE2MOTIF on two
example graphs. For each node, we compute a 3-layer hierarchical embedding, perform hierarchical
clustering, and assign vertices colors corresponding to cluster labels. Across both graphs, NODE2VEC
identifies communities rather than structural similarities. GRAPHWAVE and NODE2MOTIF both
learn structural embeddings of the “barbell" graph (above). For the “trianglion" graph (below),
GRAPHWAVE fails to separate the unique central vertex from neighbors (over many hyperparameters).
This vertex is stabilized by the automorphism group of the graph and is identified by NODE2MOTIF.

Organic Molecules. We examine the performance of our embedding method on a dataset of 133,885
organic molecules (QM9; Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). For this dataset, each
node is an atom, and each edge is a bond. Atom type and bond type are encoded with the labeling
function described in section 3. For each node in each molecule, we compute a 3-layer hierarchical
embedding. Figure 3 shows the results of querying the embedded dataset for a single node in the
molecule displayed in the bottom left cell. Over the entire dataset, NODE2MOTIF yields a distance
metric that captures structural similarity and identifies near isomorphic molecules.

Most methods for molecular database query rely on hand designed features or string-based represen-
tations (Willett, Barnard, and Downs, 1998; Weininger, 1988). More recent methods adapt features to
the statistics of molecular graphs (Duvenaud et al., 2015); however, most convolutional approaches
lose important structural information through pooling. Our method is fully unsupervised and provides
an invariant metric over molecules, which may be used for similarity queries in molecular databases.
We see potential for our method as unsupervised pre-training for downstream supervised learning.
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Figure 3: Molecules. Molecular similarity in NODE2MOTIF embedding space. The target molecule
is depicted in the bottom left cell. For each embedding layer, we show the molecular fragment (motif)
that is ‘visible’ to the target node embedding, and a set of molecules/fragments that are rank-ordered
by Euclidean distance from the target. Rightmost column shows fragments least similar to target.

4



References

Tukey, J. (1953). “The spectral representation and transformation properties of the higher moments
of stationary time series”. In: Reprinted in The Collected Works of John W. Tukey 1, pp. 165–184.

Hansen, Per Brinch (1970). “The nucleus of a multiprogramming system”. In: Communications of
the ACM 13.4, pp. 238–241.

Lubiw, Anna (1981). “Some NP-complete problems similar to graph isomorphism”. In: SIAM Journal
on Computing 10.1, pp. 11–21.

Weininger, David (1988). “SMILES, a chemical language and information system. 1. Introduction
to methodology and encoding rules”. In: Journal of chemical information and computer sciences
28.1, pp. 31–36.

Gourd, F., J. Gauthier, and H. Younes (1989). “Une méthode d‘invariants de l‘analyse harmonique en
reconnaissance de formes”. In: Traitement du signal 6.3, pp. 161–178.

Sadler, B. and G. Giannakis (1992). “Shift-and rotation-invariant object reconstruction using the
bispectrum”. In: JOSA A 9.1, pp. 57–69.

Kakarala, R. (1993). “A group theoretic approach to the triple correlation”. In: IEEE Workshop on
higher order statistics, pp. 28–32.

Willett, Peter, John M Barnard, and Geoffrey M Downs (1998). “Chemical similarity searching”. In:
Journal of chemical information and computer sciences 38.6, pp. 983–996.

Milo, Ron et al. (2002). “Network motifs: simple building blocks of complex networks”. In: Science
298.5594, pp. 824–827.

Van Dam, Edwin R and Willem H Haemers (2003). “Which graphs are determined by their spectrum?”
In: Linear Algebra and its applications 373, pp. 241–272.

Kondor, R. (2007). “A complete set of rotationally and translationally invariant features for images”.
In: Arxiv preprint cs/0701127.

Darga, Paul T, Karem A Sakallah, and Igor L Markov (2008). “Faster symmetry discovery using
sparsity of symmetries”. In: 2008 45th ACM/IEEE Design Automation Conference. IEEE.

Kondor, R. (2008). Group theoretical methods in machine learning. Columbia University, PhD Thesis.
Kondor, Risi and Karsten M Borgwardt (2008). “The skew spectrum of graphs”. In: Proceedings of

the 25th international conference on Machine learning. ACM, pp. 496–503.
Shervashidze, Nino et al. (2011). “Weisfeiler-lehman graph kernels”. In: Journal of Machine Learning

Research 12.Sep, pp. 2539–2561.
Ruddigkeit, Lars et al. (2012). “Enumeration of 166 billion organic small molecules in the chemical

universe database GDB-17”. In: Journal of chemical information and modeling 52.11.
McKay, Brendan D and Adolfo Piperno (2014). “Practical graph isomorphism, II”. In: Journal of

Symbolic Computation 60, pp. 94–112.
Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena (2014). “Deepwalk: Online learning of social

representations”. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, pp. 701–710.

Ramakrishnan, Raghunathan et al. (2014). “Quantum chemistry structures and properties of 134 kilo
molecules”. In: Scientific Data 1.

Duvenaud, David K et al. (2015). “Convolutional networks on graphs for learning molecular finger-
prints”. In: Advances in neural information processing systems, pp. 2224–2232.

Babai, László (2016). “Graph isomorphism in quasipolynomial time”. In: Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing. ACM, pp. 684–697.

Grover, Aditya and Jure Leskovec (2016). “node2vec: Scalable feature learning for networks”. In:
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, pp. 855–864.

Kondor, Risi and Horace Pan (2016). “The multiscale laplacian graph kernel”. In: Advances in Neural
Information Processing Systems, pp. 2990–2998.

Neumann, Marion et al. (2016). “Propagation kernels: efficient graph kernels from propagated
information”. In: Machine Learning 102.2, pp. 209–245.

Donnat, Claire et al. (2018). “Learning structural node embeddings via diffusion wavelets”. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, pp. 1320–1329.

Kondor, R et al. (2018). “Covariant compositional networks for learning graphs”. In: arXiv preprint
arXiv:1801.02144.

Wu, Zonghan et al. (2019). “A comprehensive survey on graph neural networks”. In: arXiv preprint
arXiv:1901.00596.

5


	Introduction
	Background
	Node2Motif
	Related Work
	Experiments & Results

