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Abstract
We address the problem of reconstructing a matrix from a subset of its entries.
Current methods, branded as geometric deep learning, augment classical rank
regularization techniques by incorporating geometric information into the solu-
tion. This information is usually provided as graphs encoding relations between
rows/columns. In this work we propose a simple spectral approach for solving the
matrix completion problem. We introduce the zoomout loss, a multiresolution spec-
tral geometric loss inspired by recent advances in shape correspondence, whose
minimization leads to state-of-the-art results on various recommender systems
datasets. Surprisingly, for some datasets we were able to achieve comparable
results even without incorporating geometric information. This puts into question
both the quality of such information and current methods’ ability to use it in a
meaningful and efficient way.

1 Introduction
Matrix completion deals with the recovery of missing values of a matrix from a subset of its entries,

Find X s.t. X � S = M � S. (1)
HereX stands for the unknown matrix,M ∈ Rm×n for the ground truth matrix, S is a binary mask
representing the input support, and � denotes the Hadamard product. In what follows, we shall use
the nomenclature of the machine learning literature, referring to the given entries ofM as trainings
set. Since problem (1) is ill-posed, it is common to assume thatM belongs to some low dimensional
subspace. Under this assumption, the matrix completion problem can be cast via the least-squares
variant,

min
X

rank (X) +
µ

2
‖(X −M)� S‖2F . (2)

Relaxing the intractable rank penalty to its convex envelope, namely the nuclear norm, leads to a
convex problem whose solution coincides with (2) under some technical conditions [Candès and
Recht, 2009]. Another way to enforce low rank is by explicitly parametrizingX in factorized form,
X = Y Z>. The rank is upper-bounded by the inner dimensions of Y ,Z>. A recent study by
Arora et al. [2019] suggests that overparametrizing X as a product of L matrices results in a low
rank matrix due to implicit regularization properties of the gradient descent algorithm. This result is
surprising since such models are a priori expected to overfit the training data.

Current approaches for matrix completion, falling under the umbrella of geometric deep
learning, make use of side information in the form of graphs encoding relations between
rows/columnsKalofolias et al. [2014], Monti et al. [2017]. Geometric deep learning generalizes the
standard deep learning approaches, tailored for structured Euclidean domains, to domains such as
general graphs and manifolds. In particular, graph convolutional neural networks (GCNNs) follow
the standard architecture of Euclidean CNNs, but replace the Euclidean convolution operator with
linear filters constructed using the graph Laplacian. While these techniques achieve state-of-the-art
results in various tasks, their design is arguably cumbersome and non-intuitive. It has recently been
demonstrated that simple architectures perform competitively on several graph analysis tasks [Wu
et al., 2019]. Such simple techniques have the advantage of being easier to analyze and reproduce.
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Related work. The literature on matrix completion is vast and it is impossible to fully review it in
this brief note. Of particular significance is the pioneering work of Candès and Recht [2009], which
initiated line of works on nuclear norm minimization. For a contemporary review of these methods the
reader is referred to [Li et al., 2019] and the references therein. Kalofolias et al. [2014] were the first
to introduce graphs into the convex low-rank matrix recovery problem. Later approaches integrated
these graphs into the deep learning framework in what is now called geometric deep learning. We
note the works of Monti et al. [2017] who combined geometric matrix completion with recurrent
multi-graph neural networks and Berg et al. [2017] who used a graph autoencoder framework based
on differentiable message passing to predict the missing entries. The inspiration for this paper stems
from techniques for finding shape correspondence. In particular, the functional maps framework
and its variants [Ovsjanikov et al., 2012, 2016], most notably the work of [Litany et al., 2017] who
combined functional maps with joint diagonalization to solve partial shape matching problems, and
the product manifold filter (PMF) [Vestner et al., 2017a,b] and zoomout [Melzi et al., 2019] – two
greedy algorithms for correspondence refinement by gradual introduction of high frequencies. This
last method lent its name to the loss we define in Section 3.

Contribution. Our contributions are as follows: Firstly, we provide a geometric interpretation for
deep matrix factorization [Arora et al., 2019] via the functional maps framework. Secondly, we
introduce the zoomout loss, a multiresolution spectral geometric loss inspired by recent advances
in shape correspondence. Thirdly, we show that via a simple shallow and fully linear network, it is
possible to obtain state-of-the-art results on various recommendation systems datasets. And lastly,
we demonstrate that in some cases the effect of the geometry is only marginal, and results on par
with state-of-the-art can be achieved even without it.

2 Background
Spectral graph theory. Let G = (V,E,Ω) be a (weighted) graph specified by its vertex set V
and edge set E, and let Ω be its adjacency matrix. Given a function x ∈ R|V | on the vertices, we
define the following quadratic form (also known as Dirichlet energy) measuring the variability of the
function x on the graph,

x>Lx =
∑

(a,b)∈E

ωa,b (x(a)− x(b))
2
. (3)

The matrix L is called the (combinatorial) graph Laplacian, and is given by L = D −Ω, where
D = diag(Ω1) is the degree matrix. L is symmetric and positive semi-definite and therefore
admits a spectral decomposition L = ΦΛΦ>. The graph Laplacian is a discrete generalization
of the continuous Laplace-Beltrami operator, and therefore has similar properties. One can think
of the eigenpairs (φi, λi) as the graph analogues of "harmonic" and "frequency". A function
x =

∑|V |
i=1 αiφi on the vertices of the graph whose coefficients αi are small for large i, demonstrates

a "smooth" behaviour on the graph in the sense that the function values on nearby nodes will be
similar. A standard approach to promoting such smooth functions on graphs is by using the Dirichlet
energy (3) to regularize some loss term. For example, this approach gives rise to the popular bilateral
and non-local means filters [Gadde et al., 2013].

Functional maps. Let G1 = (V1, E1,Ω1), G2 = (V2, E2,Ω2) be two graphs, and let Φ,Ψ, be
two orthonormal bases for functions defined on the vertices of these graphs. Given two such functions,
x = Φα on G1 and y = Ψβ on G2, one can define a map C between their representations α and
β, i.e., α = Φ>x = CΨ>y = Cβ. The matrix C represents a linear map between the functional
spaces on G1 and G2, known as a functional map. LetX be a function defined on the product graph
G1 × G2, then the functional map is given by projecting X onto the corresponding bases Φ,Ψ,
C = Φ>XΨ. Using the SVD, one can decompose X = UΣV > to interpret C as a mapping
between a function on one graph and a function on the other. To getX back from the functional map,
one can useX = ΦCΨ>. For computational reasons, it is common to use truncated bases Φ,Ψ, in
which case the last equality holds only approximately.

The structure of the functional map depends on the properties of the chosen bases and the functions
it maps. A common choice for a basis is the aforementioned Laplacian eigenbasis, building on the
assumption that the signals involved are smooth with respect to the graphs. While this is a useful
model, it assumes that the given graphs encode the geometry in an adequate way. In real world
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problems these graphs are only approximate, constructed from heuristic features associated with the
row and the column spaces. Given better graphs, a simpler structure of the functional map emerges.
For example, by introducing two orthonormal matrices P andQ, one can make the functional map
C = (ΦP )

>
X (ΨQ) diagonal. These orthonormal matrices can be thought of as a way of aligning

the bases Φ,Ψ, with the principal axes ofX .

3 Spectral geometric matrix completion
We assume that we are given a set of samples from the unknown matrix M ∈ Rm×n, encoded by
a binary mask S, and two graphs Gr, Gc, encoding relations between the rows and the columns,
respectively. Denote the Laplacians of these graphs and their spectral decompositions by Lr =
ΦΛrΦ

>, Lc = ΨΛcΨ
>. Our approach relies on a minimization problem of the form

min
X

E(X) + µrtrace
(
X>LrX

)
+ µctrace

(
XLcX

>) , (4)

with E denoting the data term that we discuss in the sequel. As mentioned above, the input graphs are
typically constructed from a set of heuristically gathered features and therefore may provide a poor
representation of the latent geometry. One way to account for this inaccuracy could be to include
the features in our optimization. This will induce, through a complicated nonlinear dependence, a
different metric (i.e., adjacency matrix) and a different graph Laplacian. This approach lies at the
heart of smoothing models based on conditional random fields (CRFs) used in image segmentation
(see for example Krähenbühl and Koltun [2011]).

We adopt a different approach by working in the spectral domain. Switching to the spectral do-
main allows us to modify the metric indirectly by applying orthogonal transformations, P and
Q, to the bases Ψ,Φ. The purpose of these transformations is to rotate Ψ,Φ, in a way that will
simplify the structure of C. Since our method relies on the premise that the matrix M is smooth
with respect to some graphs, our interest is in modified bases ΦP ,ΨQ, which arise from the
eigendecomposition of a graph Laplacian. To that end, we shall use Lr,Lc, as proxies for the
latent graph Laplacians, and promote bases that approximately diagonalize them by introducing
two energy terms, Er

diag =
∥∥off

(
P>ΛrP

)∥∥2
F

, and Ec
diag =

∥∥off
(
Q>ΛcQ

)∥∥2
F

, where off(·) de-
notes the off-diagonal elements. Under these modifications, the Dirichlet energy terms from (4)
become, Er

dir = trace
(
QC>P>ΛrPCQ

>) and Ec
dir = trace

(
PCQ>ΛcQC

>P>) . Finally,
we introduce the following energy terms to promote the (approximate) orthonormality of P ,Q:
Er

orth(P ) =
∥∥P>P − I∥∥2

F
, Ec

orth(Q) =
∥∥Q>Q− I∥∥2

F
.

Zoomout loss. Let us denote the training error achieved by a matrixXp,q ≡ ΦpCp,qΨ
>
q synthe-

sized from the first p vectors in Φ and the first q vectors in Ψ as Zp,q ≡ ‖
(
ΦpCp,qΨ

>
q −M

)
�S‖2F .

We define the zoomout loss as follows:

Ez =

m,n∑
p=1,q=1

wp,qZp,q, (5)

with the weights wp,q ≥ 0. It can be shown that it is enough to use each value of p or q only once
and therefore most of the wp,q shall be set to 0. We defer those details for an extended version of
this article. The zoomout loss (5) is inspired by the greedy approaches for shape correspondence
proposed by Vestner et al. [2017b], Melzi et al. [2019], but we advocate minimizing the training
error using all resolutions at once. This simultaneous multi-resolution approach incurs a penalty on
the rank of the reconstructed matrix by implicitly giving more weight to the low frequency terms.
For example, the sub-matrix C2,2 appears in all the terms Zp,q with p ≥ 2, q ≥ 2, emphasizing its
importance. This allows us to be sloppy in the estimation of the rank ofM without compromising
the results by much. Following the discussion above, we replace Φ,Ψ with ΦP ,ΨQ, obtaining
Zp,q(P ,C,Q) ≡ ‖

(
ΦPpCp,qQ

>
q Ψ> −M

)
� S‖2F . With this modification, the zoomout loss (5)

should favor bases ΦP ,ΨQ, in which most of the energy ofC is concentrated in the low frequencies,
i.e., the top-left part. An interesting observation is that by setting p = m, q = n, we get the deep
matrix factorization (DMF) method from Arora et al. [2019] (up to initialization). As we show in
Section 4, this model alone, without any additional geometric priors, is sufficient to obtain results
on par with the state-of-the-art on some datasets. This puts in question the quality of the geometric
information in those cases. The complete minimization objective combines all the described terms
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Model Synthetic Neflix Flixster Douban ML-100K
MC [Candès and Recht, 2009] – 1.533 0.845 0.973
GMC [Kalofolias et al., 2014] 0.3693 – – 0.996
GRALS [Rao et al., 2015] 0.0114 1.313/1.245 0.833 0.945
RGCNN [Monti et al., 2017] 0.0053a 1.179/0.926 0.801 0.929
GC-MC [Berg et al., 2017] – 0.941/0.917 0.734 0.910b

FM (ours) 0.0064 – – –
DMF [Arora et al., 2019], (ours) 0.215 1.06 0.732 0.92c/ 0.922
SGMC (ours) 0.0021 0.971 / 0.900 0.731 0.912
SGMC-Z (ours) 0.0036 0.957 / 0.888 0.733 0.907c/ 0.913

a This number corresponds to the inseparable version of MGCNN.
b This number corresponds to GC-MC.
c Early stopping.

Table 1: RMSE test set scores for runs on Synthetic Netflix [Monti et al., 2017], Flixster [Jamali and Ester, 2010],
Douban [Ma et al., 2011], and Movielens-100K [Harper and Konstan, 2016]. For Flixster, we show results for both
user/item graphs (right number) and user graph only (left number). Baseline numbers are taken from [Monti et al.,
2017, Berg et al., 2017].

weighed with the appropriate weights and minimized with respect toC, P andQ by gradient descent,

min
C,P ,Q

Ez + µrE
r
dir + µcE

c
dir + orE

r
orth + ocE

c
orth + ρrE

r
diag + ρcE

c
diag. (6)

4 Results and discussion
We demonstrate the effectiveness of our approach on the following datasets: Synthetic Netflix,
Flixster, Douban and Movielens (ML-100K) as referenced in Table 1. The datasets include user
ratings for items (such as movies) and additional features. For all the datasets we use the users and
items graphs taken from Monti et al. [2017]. See Table 2 in the Appendix for a summary of the
dataset statistics. The compared methods are referenced in Table 1. Two variants of the proposed
spectral geometric matrix completion method (SGMC) are evaluated. For these methods we choose a
maximal resolution pmax, qmax (which can be larger than m,n) and a skip determining the spectral
resolution (i.e., which wp,q in (5) are set to 1). SGMC uses only wpmax,qmax = 1, with the rest set to
zero, while SGMC-Z uses w1+kpskip,1+kqskip = 1, k ∈ N. These and other hyper parameters for our
algorithms were tuned by hand, and are summarized in Table 3 in the Appendix. We shall provide
a thorough investigation of their effect in an extended version of this article. The method labeled
DMF minimizes the loss

∥∥(PCQ> −M)
� S

∥∥2
F

, i.e., it does not incorporate any geometric side
information. This method coincides with the one suggested by Arora et al. [2019].

A few remarkable observations can be extracted from Table 1: First, on the Douban and ML-100K
dataesets, the simple DMF shows competitive performance with all the other methods. This suggests
that the geometry information is not very useful for these datasets. Second, the proposed algorithm
outperforms the other methods, despite its simple and fully linear architecture. This suggests that the
other methods do not exploit the geometry properly, and this fact is obscured by their cumbersome
architecture. Third, while some of the experiments reported in Table 1 showed only slight margins in
favor of SGMC/SGMC-Z compared to DMF, the results in the Synthetic Netflix column suggest that
when the geometric model is accurate our methods demonstrate superior results. We further validated
this on a synthetic model generated from the ML-100k graphs. These experiments will be reported in
an extended version of this article.

5 Conclusion
In this work we have proposed a simple spectral technique for matrix completion, extending ideas
borrowed from the field of non-rigid shape analysis. Our approach combines a full multiresolution
spectral loss with (implicit) metric learning. Under a suitable change of basis, we obtain a fully
linear network that gives rise to a useful interpretation via the framework of functional maps. We
have demonstrated state-of-the-art results on a few recommendation systems datasets, surpassing
results obtained by much more complicated architectures. In addition, we have demonstrated that
some results which are usually attributed to a clever use of geometry, can be obtained without any
geometry altogether. We refer the reader to an extended version of this work for detailed explanation,
additional results, theoretical discussions, and ablation studies.
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6 Appendix

Dataset Users Items Features Ratings Density Rating levels
Flixster 3,000 3,000 Users/Items 26,173 0.0029 0.5, 1, . . . , 5
Douban 3,000 3,000 Users 136,891 0.0152 1, 2, . . . , 5
MovieLens-100K 943 1,682 Users/Items 100,000 0.0630 1, 2, . . . , 5

Table 2: Number of users, items and ratings for Flixster, Douban and Movielens-100K datasets used
in our experiments and their respective rating density and rating levels.

Dataset pmax/qmax pskip/qskip µr/µc ρr/ρc or/oc Trainable
variables

Synthetic
Netflix 80/80 –/– 0.01/0.01 0/– 0/– P ,C

500/500 3/1 0.4/0.4 0.1/– 0/– P ,C
Flixster

(both graphs) 100/100 –/– 0.0025/0.0025 0.001/– 0/– P ,C

100/100 1/1 0.0025/0.0025 0.001/– 0/– P ,C
Douban 2500/2500 –/– 0.001/0 0.001/0 0.001/0 P ,C,Q

1000/1000 50/1000 0.011/0 0.004/0 0.001/0 P ,C,Q
ML-100K 5000/5000 –/– 0.0002 /0.0002 0.0002 /0.0002 0/0 P ,C,Q

3200/3200 30/35 0.03/0.03 0.2/0.2 0.09/0.09 P ,C,Q

Table 3: Table of settings for the algorithms reported in Table (1). For each dataset the top row is
SGMC and the bottom row is SGMC-Z.
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