
Curvature Graph Network

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph-structured data is prevalent in many domains. Despite the widely celebrated1

success of deep neural networks, their power in graph-structured data is yet to2

be fully explored. We propose a novel network architecture that incorporates3

advanced graph structural information. In particular, we leverage discrete graph4

curvature, which measures how the neighborhoods of a pair of nodes are structurally5

related. The curvature of an edge (x, y) defines the distance taken to travel from6

neighbors of x to neighbors of y, compared with the length of edge (x, y). It is a7

much more descriptive structural measure compared to previously ones that only8

focus on node specific attributes or limited topological information such as degree.9

Our curvature graph convolution network outperforms state-of-the-art on various10

real-world graphs, especially the larger and denser ones.11

1 Introduction12

Despite the huge success of deep neural networks, it remains challenging to fully exploit their power13

on graph-structured data, i.e., data whose underlying structure is a graph, e.g., a social network,14

a telecommunication network and a biological network. Inspired by the power of convolution on15

image data, there are many attempts to extend convolutional networks for graph-structured data. For16

example, one category of graph neural networks, named spatial approaches, iteratively update each17

node representation by aggregating the information from its neighbors. For these spatial approaches,18

it is important to incorporate local structural information of the graph. Node degree has been used19

to reparametrize the nonlinear transformation of messages [9] or as an additional node feature [4].20

However, node degree is fairly limited; there can be different graph topologies with the same degree21

distribution. The limitation is illustrated in Figure 1. Nodes x and y have the same degree in three22

significantly different graphs: a tree, a grid graph and a clique. Youet al. [20] calculates the shortest23

path between nodes. However this is not for node classification task and cannot extract complicate24

local information. To effectively make use of graph structural knowledge, one would need a feature25

with more discriminative power; one that can distinguish these three scenarios in Figure 1.26

In this paper, we are focusing on designing a novel graph neural network that exploits advanced27

structural information. Notice that node degree only describes the number of neighbors of each node,28

but does not say how these neighbors are connected among themselves. We seek to use structural29

information characterizing how neighborhoods of a pair of nodes relate to each other. In Figure 1, the30

neighborhoods of x and y are well separated in a tree. In a grid graph, the two neighborhoods are31

within a parallel shift of each other. In a clique, they completely overlap. To quantify such pairwise32

structural information, we draw inspiration from the recent study of graph curvature [12, 7, 18].33

Similar to the curvature in the continuous domain, e.g., the Ricci curvature of a Riemannian manifold,34

the discrete graph curvature measures how the geometry of a pair of neighborhoods deviates from a35

“flat” case, namely, the case of a grid graph. There are several definitions of discrete curvature for36

graphs. The most notable ones are Ollivier’s Ricci curvature [12] and Forman curvature [18]. In both37

definitions, the edges of a (infinite) grid graph have zero curvature. The curvature of an edge (x, y)38

in a tree is negative and edges in a complete graph have positive curvature. Intuitively, the graph39
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(a) Tree: κ(x, y) = −0.5 (b) Grid: κ(x, y) = 0 (c) Clique: κ(x, y) = +0.625

Figure 1: Illustration of structural information. In all three graphs, the degrees of x and y are the
same. However, the Ricci curvature of the edge (x, y) is negative, zero, and positive, respectively.
All edges have weight 1.

curvature measures how well two neighborhoods are connected and/or overlap with each other. Such40

information is related to how information propagates in the neighborhood, and should be leveraged41

by a graph convolutional network.42

We propose Curvature Graph Network (CurvGN), which is built on advance graph curvature informa-43

tion. In particular, the proposed CurvGN is a novel network architecture that efficiently computes44

graph curvature and fully leverages such information in graph convolution. Using curvature informa-45

tion, CurvGN better adapts to different local structural scenarios and filter messages passed between46

nodes differently. Notice that the curvature information captures how easy information flows between47

the nodes. Within a well-connected community, neighborhoods of adjacent nodes have large overlap48

and many shortcuts. The corresponding curvature is positive and passing information between the49

nodes is easy. For edges bridging two clusters/cliques, the curvature is negative and information50

is hard to pass. A key to our success is that we choose to be agnostic on whether the curvature51

information should be used to block or accelerate the messages in graph convolution. We exploit52

the curvature in a data-driven manner and learn how to use it to reweigh different channels of the53

message.54

2 Curvature Graph Network55

We first formulate the node label prediction problem of a graph, and explain the mechanism of a56

Graph Neural Network (GNN). Suppose we have an undirected graph G = (V,E) with features on57

the vertices H = (h1, h2, · · · , hn), hi ∈ RF . Here n = |V | is the number of nodes in the graph58

and F is the feature dimension of each node. Given labels of some nodes in V , we would like to59

predict the labels of the remaining nodes. A GNN consists of multiple hidden layers that update60

node representation from lower level node representation Ht ∈ Rn×Ft to high level representation61

Ht+1 ∈ Rn×Ft+1 . In particular, H0 is the input feature, H . Node representations of the last layer,62

HT , are fed to a fully connected layer or a linear classifier to predict node labels. The layers and63

their representations are illustrated in the top of Figure 2.64

Now we explain how to construct hidden layers that update node representations from Ht to Ht+1.65

We focus on spatial approaches and treat the convolution as a message passing scheme. The (t+1)-th66

representation of node x is computed by aggregating messages passed from x’s neighbors. We also67

include the message from x to itself. There are several aggregation methods, such as mean, max and68

sum. We choose summation as it is a commonly used aggregation method [5, 16, 19]. Denote by69

N (x) = N (x)∪{x} the neighborhood of x including itself. We have ht+1
x = σt

(∑
y∈N (x)M

t
y→x

)
,70

in which σt is the non-linear transformation. A message passed from y to x is a linear transformation71

of y’s representation. We also introduce a weight τ txy whose purpose will be clear later. We have72

M t
y→x = τ txyW

thty, in which W t is the linear transformation matrix learned in training. Formally,73

we have the representation updating equation74

ht+1
x = σt

(
τ txxW

thtx +
∑

y∈N (x)
τ txyW

thty

)
(2.1)

It is crucial to obtain suitable reweighting parameter τ txy since it is directly affecting how neighboring75

node information are passed to the node x. Some papers use node degree information as τ txy [5, 9]76

and other work uses joint node features to compute the self attention as τ txy [16]. We propose to77

use more advanced structural information, i.e., the Ricci curvature, to compute τ txy. It is also worth78

mentioning that the reweighting parameter τ txy is not necessarily a scalar. It can also be anything79

between a scalar and a F t × F t matrix. In fact, we choose F t vector later on because it has more80

expressive power than a scalar and it is easier to train than a matrix.81
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Figure 2: An overview of our Curvature Graph Network.

To illustrate how we build curvature convolution layer in Equation (2.1), we define Ricci Curvature in82

the context of graph (Section 2.1). We explain how to compute τ txy from the curvature in Section 2.2.83

2.1 Ricci Curvature84

In Riemannian geometry, curvature measures how a smooth object deviates from being flat, or being85

straight in the case of a line. Similar concepts can be extended to non-smooth setting for discrete86

objects. In particular, curvature has been studied for metric-measure space in [1, 2, 8, 15], Markov87

chain by Ollivier [12] and general graphs in [7]. The definitions of curvatures that are easier to88

generalize in a discrete graph setting are sectional curvature and Ricci curvature.89

To generalize Ricci curvature to discrete spaces, Ollivier [12] takes a coarse approach that represents90

Sx as a probability measure mx of mass 1 around x. Thus the distance can be measured by Wasser-91

stein distance (or Earth Mover distance) which finds the optimal mass-preserving transportation92

plan between two probability measures. Then the coarse Ricci curvature κ(x, y) on edge (x, y)93

is defined by comparing the Wasserstein distance W (mx,my) to the distance d(x, y), formally,94

κxy = 1− W (mx,my)/d(x, y). For an undirected graph G = (V,E), denotes the set of neighbor-95

ing nodes of a node x ∈ V as N(x) = {x1, x2, . . . , xk}. Then we can define a probability measure96

mα
x at x: mα

x(xi) = δxi=x × α+ δxi∈N(x) × (1− α)/k where α is a parameter within [0, 1] and δ97

is the indicator function. It is to keep probability mass of α at node x itself and distribute the rest98

uniformly over the neighborhood. To compute the Wasserstein distance W (mα
x ,m

α
y ) between the99

probability measures around two end points x, y of the edge (x, y), the optimal transportation plan100

can be solved by the following linear programming:101

min
M

∑
i,j

d(xi, yj)M(xi, yj), (2.2)

s.t.
∑
j

∀i,M(xi, yj) = mα
x(xi);

∑
i

∀j,M(xi, yj) = mα
y (yj).

where M(xi, yj) is the amount of probability mass transported from node xi to yi along the shortest102

path with length d(xi, yj). Following existing work [11], we set α = 0.5.103

2.2 Curvature-Driven Graph Convolution104

Next we present how Ricci curvature is used in our graph convolutional network. The usage of105

curvature should depend on the problem and the data. Intuitively, curvature measures how easy a106

message flows through an edge, and should be used to control messages in convolution. For example,107

an edge with negative curvature is likely to be a bridge connecting two different communities. If108

we assume different communities tend to have different representations/labels, a message should be109

blocked on this edge. Meanwhile, an edge with positive curvature tends to be intra-community and110

thus should have accelerated message flow. However, the intuition may be invalid if the community111

structure is not correlated with node representation/labels.112

We choose to be agnostic on how the knowledge of edge curvature should be used. We resort to113

a data-driven strategy and learn a mapping function that maps Ricci curvature κxy to the weight114

of messages, i.e., τ txy in Equation (2.1). We first explain how the mapping is learned end-to-end115

(CurvGN-1). Next we expand the mapping to a multi-valued version, to incorporate more flexibility116

in the model (CurvGN-n).117

3



CurvGN-1. As mentioned before, τ txy can be anything between a scalar and a F t × F t matrix. We118

first assume τ txy is a scalar. In this case, the mapping function can be defined as: f t : κxy → τ txy .119

We create a multi-layer perceptron (MLP) to approximate the mapping function f t since MLP is120

proved to be a universal approximation machine and can be easily incorporated into our GNN model121

for end-to-end training. Denote the MLP at the t-th layer as MLPt. As summation is used as the122

aggregation function in Equation (2.1), the messages may accumulate to an arbitrarily large value. To123

prevent a numerical explosion, we use softmax to normalize outputs of MLP over all neighbors. This124

gives us the eventual weight, τ txy. Figure 2 bottom shows how the MLP transforms a curvature and125

uses it to reweigh messages.126

CurvGN-n. Messages M t
y→x are usually multi-channeled. In particular, they are F t+1-dimensional.127

The scalar weight generated using curvature is not necessarily the same for different channels. To128

improve the expressing power of τ txy, we create a similar mapping function as f t. But the new129

mapping generates a reweighing vector T txy ∈ RF t+1

. In other words, we learn to reweigh different130

message channels differently. More details can be found in the appendix.131

3 Experiments132

Our real-world benchmarks include two families of datasets: small sparse graphs and large dense133

graphs. We compare our networks CurvGN-1 and CurvGN-n with several strong baselines. Aside134

from commonly compared baselines GCN and GAT, we also compare CurvGN-1 and CurvGN-n with135

multilayer perceptron (MLP), MoNet [9] and GraphSAGE with mean aggregation (GS-mean) [4].136

Our method is on par with state-of-the-art methods on relatively small graphs and greatly outperforms137

state-of-the-art methods on large and dense graphs, which tend to have heterogeneous topology.138

Datasets. We use three popular citation network benchmark datasets: Cora, Citeseer and PubMed139

[13]. We categorize Cora and Citeseer into the first family since both Cora and Citeseer graphs are140

relatively small and sparse. They have thousands of nodes and edges with an average node degree141

below 2. We also use four extra datasets in [14]: Coauthor CS, Coauthor Physics, Amazon Computers142

and Amazon Photos. These graphs, together with PubMed, are large and dense graphs. Those graphs143

have more than 10 thousands node and 200 thousands edges with an average node degree as high as144

20. Descriptions and statistics for all datasets in our experiments can be found in the Appendix.145

In Table 1, we report the mean and standard deviation of classification accuracy on test nodes on 100146

runs and re-use the metrics reported by [9, 14, 16] for other state-of-the-art methods.147

Table 1: Performance on Real-World Benchmarks

Method Cora Citeseer PubMed Coauthor Coauthor Amazon Amazon
CS Physics Computer Photo

MLP 58.2 59.1 70.0±2.1 88.3±0.7 88.9±1.1 44.9±5.8 69.6±3.8
MoNet 81.7 71.2 78.6±2.3 90.8±0.6 92.5±0.9 83.5±2.2 91.2±1.3
GS-mean 79.2 71.2 77.4±2.2 91.3±2.8 93.0±0.8 82.4±1.8 91.4±1.3
GCN 81.5±0.5 70.9±0.5 79.0±0.3 91.1±0.5 92.8±1.0 82.6±2.4 91.2±1.2
GAT 83.0±0.7 72.5±0.7 79.0±0.3 90.5±0.6 92.5±0.9 78.0±19.0 85.1±20.3
CurvGN-1 82.6±0.6 71.5±0.8 78.8±0.6 92.9±0.4 94.1±0.3 86.3±0.7 92.5±0.5
CurvGN-n 82.7±0.7 72.1±0.6 79.2±0.5 92.8±0.3 94.3±0.2 86.5±0.7 92.5±0.5

Discussion. Our method is on par with state-of-the-art performance for relatively small graphs.148

Meanwhile, it achieves superior performance on large and dense graphs. It is clear curvature149

information provides richer information than node degrees, at least on large and dense graphs.150

We also observe that CurvGN-n is generally better than CurvGN-1. This means multi-channel151

reweighting provides a better mechanism in leveraging curvature information. These observations152

are consistent with our synthetic experiments, which are not included due to page limitation. We153

conduct experiments on synthetic datasets generated according to various well-established graph154

models, e.g., stochastic block model [3], Watts-Strogatz network [17], Newman-Watts network [10]155

and Kleinberg’s navigable small world graph [6]. On these data, CurvGN consistently outperforms156

GAT and GCN, demonstrating the benefit of curvature information.157
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A Appendix202

Details of CurvGN-n. Using the same strategy as CurvGN-1, the vector T txy is calculated by203

applying a MLPt with F t+1 outputs. Then, we apply a channel-wise softmax function, St, that204

normalizes the MLP outputs separately on each message channel: T txy = St(MLPt(κxy))205

Substituting Txy into Equation (2.1), we have the convolution of CurvGN-n:206

ht+1
x = σt

(∑
y∈N (x)

diag(T txy)W thty

)
(A.1)

Here diag(T txy) is a matrix whose diagonal entries are entries of T txy .207

Design details of the network. In practice, we use a two-convolutional-layer CurvGN model. The208

first layer is a linear transform layer that produces an output feature vector paired with a three209

layer MLP that computes reweighing vector. input layer that transforms curvature information into210

64 dimension feature vector and a linear layer followed by a LeakyReLU layer that generates a211

reweighting vector of dimension 64. The output feature is pushed into an exponential linear unit layer212

to add non-linearity. The second layer is for classification, with the same structure as the first layer213

except that the output feature is now at length of class number. The hyperparameters are similar to214

GAT implemented in [16].215

Statistical detail of benchmarks We describe the statistical details of all datasets in Table 2. Cora216

and Citeseer are considered as small and sparse graphs while PubMed, Coauthors and Amazons are217

considered as large and dense graphs.218

Table 2: Statistic details of all datasets.

Datasets #Classes #Nodes #Edges #Features #Training #Edges/#Nodes
Cora 7 2708 5429 1433 140 2.0
Citeseer 6 3327 4732 3703 120 1.42

PubMed 3 19717 44338 500 60 2.25
Coauthor CS 15 18333 100227 6805 300 5.47
Coauthor Physics 5 34493 282455 8415 100 8.19
Amazon Computers 10 13381 259159 767 200 19.37
Amazon Photo 8 7487 126530 745 160 16.90

Data splitting and Hyper-parameters We use the exact data splitting as in semi-supervised learning219

setting used in [5, 16]: using 20 nodes per class for training, 500 nodes for validation and 1000 nodes220

for testing. During training stage, we set L2 regularization with λ = 0.0005 for all datasets. All the221

models are initialized by Glorot initialization and trained by minimizing cross-entropy loss using222

Adam SGD optimizer with learning rate r = 0.005. We apply an early stopping strategy with the223

help of the validation set based on the validation set’s accuracy with a patience of 100 epochs.224
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