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Abstract

Interaction graphs, such as those recording emails between individuals or transac-
tions between institutions, tend to be sparse yet structured, and often grow in an
unbounded manner. Such behavior can be well-captured by structured, nonpara-
metric edge-exchangeable graphs. However, such exchangeable models necessarily
ignore temporal dynamics in the network. We propose a dynamic nonparametric
model for interaction graphs that combines properties of edge-exchangeable models
with dynamic clustering patterns that tend to reinforce recent behavioral patterns.
We show that our method yields improved held-out likelihood over stationary
variants, and impressive predictive performance against a range of state-of-the-art
dynamic interaction graph models.

1 Introduction

Many forms of social interaction can be represented in terms of a multigraph, where each individual
interaction corresponds to an edge in the graph, and repeated interactions may occur between two
individuals. For example, we might have multigraphs where the value of an edge corresponds to the
number of emails between two individuals, or the number of packets sent between two hosts.
Traditional clustering algorithms such as K-means, hierarchical clustering, and stochastic block
models have been successfully applied to cluster the nodes of a finite static graph, but only a few
have considered edge clustering. Recently, the class of edge exchangeable graphs [1} 2} 3] have been
proposed for modeling networks as exchangeable sequences of edges. These models are able to
capture many properties of large-scale social networks, such as sparsity, community structure, and
power-law degree distribution.

Being explicit models for sequences of edges, edge-exchangeable models are appropriate for networks
that grow over time: we can add more edges by expanding the sequence, and their nonparametric
nature means that we expect to introduce previously unseen vertices as the network expands. However,
their exchangeable nature precludes graphs whose properties change over time. In practice, the
dynamics of social interactions tend to vary over time. In particular, in models that aim to capture
community dynamics, the popularity of a given community can wax and wane over time.

We propose a new model for multigraphs with clustered edges, that breaks the exchangeability of
existing models by preferentially assigning edges to clusters that have been recently active. We
show that incorporating dynamics using a mechanism based on the distance-dependent Chinese
restaurant process (ddCRP) [4] leads to improved test-set predictive likelihood over exchangeable
models. Further, when used in a link prediction task, we show improved performance over both its
exchangeable counterpart and a range of state-of-the-art dynamic network models.

We begin in Section [T]and 2] by providing a general introduction to Bayesian models for multigraphs,
in both the static and dynamic setting, plus a review of related works. We then introduce our model
in Section 3] before empirically evaluating our approach in Section 4]
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2 Related Work

Bayesian Models for Multigraphs. Most Bayesian models for graphs and multigraphs fall under
the vertex-exchangeable framework, where the distribution over the adjacency matrix is invariant to
jointly permuting the row and column indices. In this class, we have models such as the stochastic
block model, where vertices are clustered into finitely many communities and a parameter is associ-
ated with each community-community pair [} 6]]; the infinite relational model, where the number
of communities is unbounded [[7]]; mixed-membership stochastic block models, where edges are
generated according to an admixture model [8]; the latent feature relational model, where parameter
are distributed according to a latent feature model based on the Indian buffet process [9]]; and Poisson
factor analysis, where the parameter are distributed according to a gamma process-based latent factor
model [10,|11]]. While these models are able to capture interesting community structure, the resulting
graphs are dense or empty almost surely [[12}|[13]]. This makes them a poor choice for large real-world
networks, which are typically sparse. Further, since they explicitly model zero-edges, they are not
well-suited to link prediction tasks.

An alternative way of constructing multigraphs is using an exchangeable sequence of edges [} [2, 3].
Here, we assume the edges are generated by sequentially sampling pairs of vertices. These pairs are
iid given some nonparametric prior, such as a Dirichlet process, a normalized generalized gamma
process, or a Pitman Yor process. This construction means multigraphs can grow over time by adding
new edges, making them well-suited for link prediction tasks. Appropriate choices of priors can yield
sparsity and power law degree distribution.

Models for Dynamic Graphs. There has been significant research attention on dynamic (time-
evolving) network modelling, ranging from non-Bayesian methods such as dynamic extensions of
the exponential random graph model (ERGM) [[14], or matrix and tensor factorization-based meth-
ods [15], to Bayesian latent variable models |16} [17} 18 19} 120, 21} 22} 23]]. A common approach
relies on the extensions of static network models to a dynamic framework [24]. We focus here on
dynamic extensions of Bayesian models of the forms discussed above.

Most dynamic Bayesian networks extend jointly vertex-exchangeable graphs. For example, [25]
extends the stochastic blockmodel using an extended Kalman filter (EFK) based algorithm, and the
stochastic block transition model [26] relaxes a hidden Markov assumption on the edge-level dynam-
ics, allowing the presence or absence of edges to directly influence future edge probabilities. Several
methods have also been used to incorporate temporal dynamics into the mixed membership stochastic
blockmodel framework [27, 128} 129] and the latent feature relational model [30}131}[32]]. Lately, several
models have extended Poisson factor analysis. The dynamic gamma process Poisson factorization
(DGPPF) [33] introduces dependency by incorporating a Markov chain of marginally gamma random
variables into the latent representation. The dynamic Poisson gamma model (DPGM) [34] extends
a bilinear form of Poisson factor analysis [35] in a similar manner. The dynamic relational gamma
process model (DRGPM) [23]] also incorporates a temporally dependent thinning process.

3 Sequential Edge Clustering in Temporal Multigraphs

Our model extends the Mixture of Dirichlet Network Distributions (MDND) [3], an edge-
exchangeable model that clusters edges to create community-like structure. The MDND is based
on a sequence of Dirichlet processes: one controls the global popularity of vertices; one controls
a distribution over cluster indicators; and two per cluster control the cluster-specific distributions
over “sender” and “’recipient” vertices. Any of these distributions could be replaced with dynamic or
dependent clustering models to generate a temporally evolving graph. In practice, replacing all of
the distributions with dynamic alternatives is likely to lead to overspecification of the dependencies,
making inference challenging.

We choose to retain stationary models for H, Ay and By, implying that a cluster’s representation
stays stable over time, and allow the cluster popularities to vary by making the sequence 21, 22, . . .

time-varying. A number of methods exist for incorporating temporal dynamics into the Dirichlet
process or the related Chinese restaurant process (CRP), e.g. [36, 137, 38]]. For our purposes, we
choose to use the distance-dependent CRP (ddCRP) [4], as it captures the property that we are likely
to see clusters that have appeared recently. Recall that the CRP can be described in terms of a
restaurant analogy, where customers select tables (clusters) proportional to the number of people
already seated at that table, or sit at a new table with probability proportional to a concentration
parameter . The ddCRP modifies this by encouraging customers to sit next to “similar” customers.



In a time-dependent setting, similarity is evaluated based on arrival time using some non-negative,
non-increasing decay function f such that f(co) = 0. Concretely, given ¢;, t; arrival times of ¢ and j,

4. — ti—t; ti>t;
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Then the i-th customer picks a customer c; to sit next to (and therefore a cluster) according to

P(Ci _ ]) o~ {f(dz,]) i 75] (1)
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In an interaction network context, this implies that we are likely to see modes of communication
that have been popular in recent time periods, over modes of communication that have fallen out of
popularity. Another reason to favor the ddCRP is ease of inference: its construction lends itself to an
easy-to-implement Gibbs sampler, allowing us to apply our method to larger graphs. By contrast,
many other dependent Dirichlet processes have much more complicated inference algorithms, which
would limit scalability. While the ddCRP does not yield marginal invariance (i.e. it is not invariant to
adding edges at previously observed time points), this is not a concern in our setting, since we are
typically able to observe past instances of the full graph, and are interested in predicting future edges.
Incorporating the ddCRP into the MDND yields the following generative process:
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We perform inference using an MCMC scheme based on that developed in [4]].

4 Experiments

Datasets. We evaluate our model on four real-world networks: (1) Face-to-Face Dynamic Contacts
(FFDCﬂ [39]; M = 180 students with N = 8,332 communications for ¢ = 7 school days. (2)
Social Evolution (SocialEV [40]; M = 68 nodes and N = 399 links. This network has a high
clustering coefficient and about 2 x 10e6 events over ¢ = 6 time slots. (3) DBLP [41]]; M = 324 most
connected authors over all time periods which contains N = 11, 154 edges. (4) Enro N = 8,534
interactions among M = 151 users over 38 months (May 1999- June 2002).

Metrics. We use F1 score, Map@Fk and Hit@Fk. F1 score is 2 x (precision x recall)/(precision+recall).
Precision is the fraction of edges in the future network present in the true network, Recall is the
fraction of edges of the true network present in the future network. MAP @£ is the classical mean
average precision measure and Hits@F is the rate of the top-% ranked edges.

Comparison. In addition to the exchangeable MDND, we consider three state-of-the-art network
models, discussed in Section 2} DRGPM (23], DPGM [34]], and DGPPF [33]]. None of these models
are designed for explicit link prediction, yet can be modified to give predictions using the above
procedure of selecting the N highest probability edges. These models also have the limitation of
assuming a fixed number of vertices.

Results. Figure|[Tillustrates the F1 score, Map@£k and Hits@¥ for the proposed model, DYNMDND,
with all three decay types, EXPONENTIAL, LOGISTIC and CRP compared to DRPGM, DPGM and
DGPPF for dynamic link prediction. We use the networks of time slots 1 to 7" as a training set and
predict the network edges of time slot 7' + 1. We report the results on the three datasets: FFDC,
DBLP and Enron, using time interval of one day, one year and one month, respectively. For each task,

"http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
*http://realitycommons.media.mit.edu/socialevolution.html
*https://www.cs.cmu.edu/ enron/
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Figure 1: Performance of DYNMDND for dynamic link prediction compared to DRPGM, DPGM
and DGPPF on the three datasets.

Enron

Table 1: Predictive Log Likelihood for the held-out (test set) data computed by DYNMDND with
three different decay functions on four real-world networks (mean =+ standard error).

Dataset MDND DYNMDND-LoGISTIC DYNMDND-EXPONENTIAL
FFDC -383,094.6+146 -286,833.91+220 -344,683.9+£105
Enron -1032.94 + 147.18 -640.73+90.51 -700.88+ 22.97
DBLP -980,928.44+532.1 -798,568.4+998.5 -649,521+£195.0

SocialEv ~ -173,708.1+223.6 -23,087.3+£91.0 -19,820.1+93.6

we repeat the experiments 10 times and report the mean and standard deviation of each evaluation
metric.

We see that DYNMDND significantly outperforms DRPGM, DPGM and DGPPF on all metrics,
for the task of dynamic link prediction. We hypothesise that this is due to several reasons. First,
DYNMDND is explicitly designed in terms of a predictive distribution over edges, making it well-
suited to predicting future edges. Second, DYNMDND is able to increase the number of vertices
over time, and is likely better able to capture natural network growth. Conversely, the other methods
assume the number of vertices is fixed.

Table [T] shows the predictive log likelihood computed by DYNMDND using two different decays (i.e.
EXPONENTIAL and LOGISTIC) in comparison with the CRP decay function. The other comparison
methods do not incorporate such a log likelihood. At each time slot T, we use 80% of the network
data for training the model and the remaining 20% for the test set. It can be seen that considering
time dependency into our mixture models results in a better log likelihood for the task of prediction.
We use a sample size of 1000. We repeat the experiments 10 times and report the mean and standard
deviation of the results for the four real networks.

5 Conclusion

We have presented a new model for interaction networks that can be represented in terms of sequences
of links, such as email interaction graphs and collaboration graphs. Using a nonparametric sequence
of links makes our model well-suited to predicting future links, and unlike many vertex-based graph
models allows for an unbounded number of vertices.



References

(1]

(2]

(3]

[4

—_

(5

—

(6]

(7]

[8

—

(9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

[21]

Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Advances
in Neural Information Processing Systems, pages 4249—4257, 2016.

Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of the
American Statistical Association, 113(523):1311-1326, 2018.

Sinead A Williamson. Nonparametric network models for link prediction. The Journal of Machine
Learning Research, 17(1):7102-7121, 2016.

David M Blei and Peter I Frazier. Distance dependent chinese restaurant processes. Journal of Machine
Learning Research, 12(Aug):2461-2488, 2011.

T.A.B. Snijders and T. Nowicki. Estimation and prediction for stochastic blockmodels for graphs with
latent block structure. Journal of Classification, 14(1):75-100, 1997.

B. Karrer and M.E.J. Newman. Stochastic blockmodels and community structure in networks. Physical
Review E, 83(1):016107, 2011.

C. Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Yamada, and N. Ueda. Learning systems of concepts with an
infinite relational model. In National Conference on Artificial Intelligence (AAAI), pages 381-388, 2006.

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership stochastic
blockmodels. Journal of machine learning research, 9(Sep):1981-2014, 2008.

Kurt Miller, Michael I Jordan, and Thomas L Griffiths. Nonparametric latent feature models for link
prediction. In Advances in neural information processing systems, pages 1276—1284, 2009.

Mingyuan Zhou and Lawrence Carin. Negative binomial process count and mixture modeling. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(2):307-320, 2013.

Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with hierarchical poisson
factorization. In UAI, pages 326-335, 2015.

David J Aldous. Representations for partially exchangeable arrays of random variables. Journal of
Multivariate Analysis, 11(4):581-598, 1981.

D.N. Hoover. Relations on probability spaces and arrays of random variables. Preprint. Institute for
Advanced Study, Princeton., 1979.

Fan Guo, Steve Hanneke, Wenjie Fu, and Eric P Xing. Recovering temporally rewiring networks: A
model-based approach. In Proceedings of the 24th international conference on Machine learning, pages
321-328. ACM, 2007.

Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal link prediction using matrix and tensor
factorizations. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(2):10, 2011.

Purnamrita Sarkar, Sajid M. Siddiqi, and Geogrey J. Gordon. A latent space approach to dynamic
embedding of co-occurrence data. In International Conference on Artificial Intelligence and Statistics,
volume 2, pages 420-427, 21-24 Mar 2007.

Katsuhiko Ishiguro, Tomoharu Iwata, Naonori Ueda, and Joshua B Tenenbaum. Dynamic infinite relational
model for time-varying relational data analysis. In Advances in Neural Information Processing Systems,
pages 919-927, 2010.

Purnamrita Sarkar, Deepayan Chakrabarti, Michael Jordan, et al. Nonparametric link prediction in large
scale dynamic networks. Electronic Journal of Statistics, 8(2):2022-2065, 2014.

Daniele Durante and David B Dunson. Nonparametric bayes dynamic modelling of relational data.
Biometrika, 101(4):883-898, 2014.

Aaron Schein, Mingyuan Zhou, David M Blei, and Hanna Wallach. Bayesian poisson tucker decomposition
for learning the structure of international relations. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning, pages 2810-2819, 2016.

Konstantina Palla, Francois Caron, and Yee Whye Teh. Bayesian nonparametrics for sparse dynamic
networks. arXiv preprint arXiv:1607.01624, 2016.



[22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]

(39]

[40]

(41]

Yin Cheng Ng and Ricardo Silva. A dynamic edge exchangeable model for sparse temporal networks.
arXiv:1710.04008, 2017.

Sikun Yang and Heinz Koeppl. Dependent relational gamma process models for longitudinal networks. In
International Conference on Machine Learning, pages 5547-5556, 2018.

Elahe Ghalebi, Baharan Mirzasoleiman, Radu Grosu, and Jure Leskovec. Dynamic network model from
partial observations. In Advances in Neural Information Processing Systems, pages 9862-9872, 2018.

Kevin S Xu and Alfred O Hero. Dynamic stochastic blockmodels for time-evolving social networks. /EEE
Journal of Selected Topics in Signal Processing, 8(4):552-562, 2014.

Kevin Xu. Stochastic block transition models for dynamic networks. In International Conference on
Artificial Intelligence and Statistics, pages 1079-1087, 2015.

Wenjie Fu, Le Song, and Eric P Xing. Dynamic mixed membership blockmodel for evolving networks. In
Proceedings of the 26th annual international conference on machine learning, pages 329-336, 2009.

Eric P Xing, Wenjie Fu, Le Song, et al. A state-space mixed membership blockmodel for dynamic network
tomography. The Annals of Applied Statistics, 4(2):535-566, 2010.

Qirong Ho, Le Song, and Eric Xing. Evolving cluster mixed-membership blockmodel for time-evolving
networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 342-350, 2011.

James Foulds, Christopher DuBois, Arthur Asuncion, Carter Butts, and Padhraic Smyth. A dynamic
relational infinite feature model for longitudinal social networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 287-295, 2011.

Creighton Heaukulani and Zoubin Ghahramani. Dynamic probabilistic models for latent feature propaga-
tion in social networks. In International Conference on Machine Learning, pages 275-283, 2013.

Myunghwan Kim and Jure Leskovec. Nonparametric multi-group membership model for dynamic networks.
In Advances in neural information processing systems, pages 1385-1393, 2013.

Ayan Acharya, Joydeep Ghosh, and Mingyuan Zhou. Nonparametric bayesian factor analysis for dynamic
count matrices. arXiv preprint arXiv:1512.08996, 2015.

Sikun Yang and Heinz Koeppl. A poisson gamma probabilistic model for latent node-group memberships
in dynamic networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Mingyuan Zhou. Infinite edge partition models for overlapping community detection and link prediction.
In Artificial Intelligence and Statistics, pages 1135-1143, 2015.

Steven N MacEachern. Dependent dirichlet processes. Unpublished manuscript, Department of Statistics,
The Ohio State University, pages 1-40, 2000.

Dahua Lin, Eric Grimson, and John W Fisher. Construction of dependent dirichlet processes based on
poisson processes. In Advances in neural information processing systems, pages 1396-1404, 2010.

Lu Ren, David B. Dunson, and Lawrence Carin. The dynamic hierarchical dirichlet process. In Proceedings
of the 25th International Conference on Machine Learning, ICML ’08, pages 824-831, New York, NY,
USA, 2008. ACM.

Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: a compari-
son between data collected using wearable sensors, contact diaries and friendship surveys. PloS one,
10(9):e0136497, 2015.

Anmol Madan, Manuel Cebrian, Sai Moturu, Katayoun Farrahi, et al. Sensing the" health state" of a
community. /[EEE Pervasive Computing, 11(4):36-45, 2011.

Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. An event-based framework for characterizing
the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data
(TKDD), 3(4):16, 2009.



	Introduction
	Related Work
	Sequential Edge Clustering in Temporal Multigraphs
	Experiments
	Conclusion

