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Abstract

Learning efficient representation of data for extracting useful information to build
classifiers or predictors has opened up a new avenue in machine learning called
Representation Learning. Hyperbolic embeddings is one such invaluable tool
developed to represent discreet, structured and symbolic data like text, graphs
and trees. Embedding data in hyperbolic space has many advantages contrary to
using euclidean space, as it allows for preserving the distances and other complex
relationships that exists between the symbolic data. In this paper, we explore the
idea of obtaining hyperbolic embeddings by studying the kinematic space, first
introduced to explain the underlying connection between information theory and
AdS3/CFT2 correspondence encountered in theoretical physics. We investigate
how to learn embeddings in kinematic space, note that our aim is not to provide
a formal algorithm, but adopt a theoretic centric approach to explain a possible
new way of obtaining hyperbolic embeddings. We hope this work serves as ingress
for future works that will allow for a consilience between machine learning and
theoretical physics.

1 Introduction

The success of machine learning algorithms can be attributed to the way in which the data is
represented, the performance of these algorithms can be augmented by introducing domain-specific
knowledge or engineering features that maximize its performance. Representation learning algorithms
[1] aim to provide a way of representing data to ensure high fidelity, useful information extraction for
designing better classifiers or predictors. Representation Learning has become an invaluable tool to
represent symbolic data which have inherent latent hierarchy like trees, graphs, text etc. Authors in
[7] propose to learn embeddings by embedding them in the hyperbolic space, more precisely in the
n-dimensional Poincaré ball model. Hyperbolic space has alluring properties and is able to preserve
the complex relationships innate to the symbolic data, contrary to euclidean space. The premise of
increasing the dimensions to model increasingly complex data is only natural, authors in [5] extend
the work of hyperbolic embeddings on Poincaré-ball model to a Lorentz model of hyperbolic space
for learning high-quality embeddings. In this work, continuing this trend, we investigate the idea of
learning the embeddings in the Kinematic Space, a space of geodesics, first introduced in [8, 2], to
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explore the connection between information theory and holography, a commonly occurring theme in
theoretical physics. The kinematic space is an auxiliary lorentzian manifold also defined as a space
of oriented geodesics, in this paper we investigate how the kinematic space can act as an intermediary
when dealing with embeddings in hyperbolic space, more specifically the hyperboloid model (H2),
we see that geodesics in H2 can be thought of as point curves in the kinematic space and a metric
can be defined for finding the distances between these points. Note once again, that our treatment of
obtaining hierarchical embeddings in kinematic space is theoretical and we hope to support these
claims through experiments in future works. Meanwhile, we hope this work will serve as a starting
point to explore a consilience between deep learning and various fields like holography, conformal
field theories etc. To our best of knowledge this is the first work that attempts to learn embeddings in
the kinematic space framework.

2 Kinematic Space

We start with basic definitions of kinematic space, our formulation is largely inspired by [8] and [2].
Suppose we are tasked with the calculation of circumference, or in general, the length of a convex
curve C on the euclidean space as shown in figure 1, we can use the celebrated Crofton’s formula
given by,

length =
1

4

∫ 2Π

0

dθ

∫ +∞

−∞
dpnc(θ, p) (1)

where, p gives the distance of the straight line from the origin and θ is the polar angle.

By continually changing the values of (θ, p), we can obtain a set of lines which intersect the curve,
thus we can now calculate the length of the convex curve by counting the number of lines intersecting
it. nc(θ, p) gives the intersection number with the curve. This formulation provides a mapping
between the convex curve and the geodesics in the kinematic space, when C becomes a point, we
can expect a simultaneous change in the kinematic space as well, leading to what are called the
point-curves. Thus, a set of geodesics passing through a single convex curve shrinked to a point has
an analogue in the kinematic space called the point-curve.

Figure 1: (Left)The length of a convex curve C can be calculated by counting the number of
lines/geodesics intersecting it using the Crofton formula [2]. (Right )The set of geodesics passing a
single point forms point-curves.

2.1 dS2 as the Kinematic Space

We start with the hyperboloid model - H2, more precisely we consider the Poincaré upper half-plane
model, it turns out, the kinematic space of this model is the De-sitter space (dS2), a Lorentzian
manifold, which is a pseudo-Riemannian manifold with signature (1, n-1). This model has interesting
implications in theory of relativity, as it allows for including the concept of causality. Authors in
[3] have demonstrated the idea of embedding graphs in the Lorentzian manifold by using Multi-
dimensional scaling (MDS) algorithm. The idea of causality has an interesting application when it
comes to embedding graphs which will be discussed in the next section. We follow the treatment of
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[4] to show that the kinematic space of the hyperboloid model, more particularly we consider the
projection of co-ordinates from the upper-half plane on to a unit disk (Poincaré disk) whose kinematic
space is the deSitter space. We start with the relation -

X2 + Y 2 − U2 = 1 (2)

We introduce the co-ordinates, U = sinhτ , X = coshτcosθ and Y = coshτsinθ, thus equation 2
becomes -

ds2 = −dτ2 + cosh2τdθ2 (3)

This is the metric of the dS2, we refer [4] for a more exhaustive approach for obtaining the metric for
dS2 space. The metric can be modified to attain the form -

ds2 =
dx2 − dy2

dy2
(4)

The dS2 space can be visualized as a hyperboloid by embedding it in a higher dimensional ambient
space called the Minkowski space M, this allows the dS2 space to have an induced metric dictated by
M.

3 Minkowski Space and Hyperbolic Embeddings

The Minkowski space M is an ambient space equipped with the metric gM for vectors (U,V) given by,

gM(U,V) = [u1v1 − u2v2 − u3v3 − ....unvn] (5)

To compute the hyperbolic embeddings, E = {eni=1} in the kinematic space, we assume the set of
symbols vary with the distance function given by,

d((U,V)) = arcosh(gM(U,V)) (6)

The geodesics in the dS2 are equivalent to the points formed by the intersection of a unique plane
and its normal, making dS2 a natural auxiliary geometry of H2. Thus, the major advantage of
computing embeddings in the kinematic space is that distance between the geodesics is equivalent to
calculating the distance of points. Note that work [6] also attempts to learn word embeddings using
the hyperboloid model but our work highlights learning in the kinematic space.

3.1 Implications of Causality in Graph Embedding

The points in kinematic space can be classified as time-like, space-like and light-like separated, these
classifications have special importance when studying the theory of relativity, but in our case the
idea of points being time-like, space-like and light-like could assist in embedding the graphs. Two
points are said to be time-like separated if the geodesics formed by these points are contained in one
another, they are space-like if neither one contains the other and finally light-like implies they both
share a common end-point. Thus, the points in the kinematic space form a Causal Set. This can be
characterized by a metric as outlined in [8]

ds2 =
∂S2(u, v)

∂u∂v
dudv (7)

which gives the kinematic space a causal structure. This idea is useful because most of the real-world
graphs like citation networks, family trees etc share some sort of causal relationship [3], this could, in
principle, help in application like link-prediction in graphs, where we are expected to ascertain the
probability of links between the nodes.
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Figure 2: The visualization of time-like, space-like and light-like geodesics.

4 Conclusion

In this paper, we have explored the idea of obtaining hyperbolic embeddings by transforming our
embedding space into kinematic space. We have provided a mathematical treatment of obtaining
said embeddings. We hope to provide more experimental results in our future works, meanwhile we
hope this work will serve as a starting point to explore possible conjunction of machine learning and
theoretical physics.
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