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Abstract

We present a probabilistic framework for community discovery and link prediction
for graph-structured data, based on a novel, gamma ladder variational autoencoder
(VAE) architecture. We model each node in the graph via a deep hierarchy of
gamma-distributed embeddings and define each link probability via a nonlinear
function of the bottom-most layer’s embeddings. The gamma latent variables
naturally result in non-negativity and sparsity of the learned embeddings, and
facilitate direct interpretation as membership of nodes into (possibly multiple)
communities/topics. The proposed ladder-based recognition model allows fast
inference over the hierarchical embeddings. We compare our model with other
state-of-the-art methods and report encouraging quantitative and qualitative results.

1 Introduction
Representation learning for the nodes in a graph is an important problem in a wide range of ap-
plications involving graph-structured data, such as community discovery, link-prediction, node
classification, etc [4]. Some of the prominent prior works in this direction include stochastic block-
models and variants [13, 12, 1, 10] and, more recently, graph neural networks [14, 8, 3]. While
stochastic blockmodels and their variants are effective at learning the underlying latent structure (e.g.,
community structure) of the graph using latent variables that denote node membership to communities,
the graph neural network based methods, such as graph convolutional networks (GCN) [8] and its
variants [3] are appealing since they enable learning multilayer representation for the nodes in the
graph, which has been shown to achieve impressive results on link-prediction and node classification.

Despite providing nice interpretability for the node embeddings, the powerful variants of stochastic
blockmodels such as mixed-membership blockmodels [1] and overlapping stochastic blockmodels [12,
19] are especially difficult to do inference on (relying on expensive MCMC or variational inference),
and are difficult to scale. On the other hand, the recently proposed graph neural networks lack a
proper generative story, do not have a mechanism to do model selection (e.g., inferring the size of
node embeddings), and the learned embeddings do not have direct interpretability (required for tasks
such as community discovery).

In this work, we develop a deep generative framework for graph-structured data that enjoys the
natural advantages of stochastic blockmodels and graph neural networks, while also addressing their
limitations/shortcomings in a principled manner. Our framework is based on a novel, gamma ladder
variational autoencoder (VAE) architecture, which allows each node in the graph to be modeled by
multiple layers of gamma-distributed latent variables (which represent multiple layers of embeddings
for each node). The probability of each link in the graph is a nonlinear function (modeled by a
deep neural network) of the node embeddings of the associated nodes. While existing ladder VAE
architectures [15] typically assume dense, Gaussian distributed latent variables in each layer, the
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Figure 1: (Left) The decoder/generator network depicting link (Aij) generation using the node embeddings.
(Right) The inference/recognition network which takes the adjacency matrix A and the side information S as
input. For the upward deterministic pass (blue), a graph encoder (GCN) is used. The downward pass (orange)
is the deep hierarchy of latent variables. The model uses information sharing scheme between the inference
and generator network (left to right). While doing inference, the intermediate layers in the upward pass are
conditioned on the complete adjacency matrix A. Here H(l) =

[
h

(l)
1 , ...,h

(l)
N

]T and Z(l) =
[
z
(l)
1 , ..., z

(l)
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gamma-distributed embeddings in our ladder VAE architecture naturally provide sparsity [2, 19] and
interpretability of the node embeddings.

2 Preliminaries
We will introduce the notation as we go. We will first briefly describe the Graph Convolution
Network (GCN) [8] and the Ladder Variational Autoencoder (VAE) [15]. GCN uses a series of
convolutional operators to find a nonlinear deterministic embedding for each node in a graph. Given
an adjacency matrix A ∈ {0, 1}N×N , the forward propagation rule for each layer l in GCN is defined
as H(l) = g(AH(l−1)W(l)) where H(0) = S (S = I when no side information is present), W(l)

is the weight matrix for the layer l and g(.) is the element-wise non-linearity. GCN have recently
emerged as a flexible encoder for graphs (similar in spirit to CNNs for images) which makes them
an ideal choice for the encoding step in our VAE based generative framework. As we show in § 5,
the vanilla GCN model can not learn interpretable node embeddings and hence cannot be used for
community detection for nodes unlike our model.

The ladder VAE [15] is an improvement over the standard VAE [7] by having multiple stochastic
latent variables in VAE based deep generative models (note that the standard VAE has only a single
layer of stochastic latent variables and multiple layers of deterministic variables). Ladder VAE does
inference over multiple stochastic variables via an information sharing scheme between the upward
deterministic pass and the downward stochastic pass during the inference of latent variables. In
particular, each stochastic latent variable is conditioned on a deterministic variable from the upward
pass and a stochastic latent variable from the downward pass. In § 4, we leverage this information
sharing scheme to do inference over a hierarchy of interpretable node embeddings.

3 Gamma Ladder VAE for Graphs
The generative process for our gamma ladder VAE for modeling graph-structured data is shown
in Fig. 1 (Left). We assume that an observed edge Aij between nodes i and j is associated with a
deep hierarchy of latent variables {z(`)i }L`=1 and {z(`)j }L`=1. The latent variables {z(`)i }L`=1 denote

the embeddings of the node i, where z(`)i ∈ RK`
+ and K` is the embedding size in layer `. The deep

hierarchy of gamma-distributed embeddings is generated as follows

z
(L)
i ∼ Gam(ŝi, r̂

(L)), ... z
(`)
i ∼ Gam(Φ(`+1)z

(`+1)
i , r̂(`)), ..., z

(1)
i ∼ Gam(Φ(2)z

(2)
i , r̂(1)) (1)

Here Φ(`) = [φ
(`)
1 ,φ

(`)
2 , ...φ

(`)
K`

] denotes a non-negative K`−1 ×K` transformation matrix, with

each column φ(`)
k`
∈ RK`−1

+ summing to one. An especially appealing aspect of the above hierarchical
construction is that the non-negativity and sparsity of the gamma latent variables allows direct
interpretability of the node embeddings as communities [19]. In particular, each component of the
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node embedding vector z(`)i ∈ RK`
+ denotes the strength of membership of node i into one of the K`

communities. Moreover, since our model learns a multilayer embedding for each node, it can infer
communities at multiple layers of granularities [5].

We assume that each link Aij is generated as Aij ∼ Bern(pij); where pij = f(z
(1)
i , z

(1)
j ). Here

f(., .) can be any differentiable function which takes input two vectors to give a probability score.

4 Inference
Exact inference in our model is intractable, partly because of the multiple layers of embeddings
and partly because of the choice of Gamma distribution as prior. Thus we use stochastic gradient
variational Bayes (SGVB) [6, 7] to perform inference for our model. Figure 1 (Right) shows
our inference network used for our recognition model. We approximate the model’s true posterior
p({z(`)i }

N,L
i=1,`=1|A,S) with a variational posterior q({z(`)i }

N,L
i=1,`=1). Unlike traditional ladder VAE,

our framework uses gamma latent variables instead of Gaussian latent variables. While gamma distri-
bution would have been a more suitable variational distribution in our case, gamma random variables
do not have an easy reparameterization, which makes it difficult to apply SGVB. To address this
issue, we approximate the variational posterior of the node embeddings using Weibull distributions.
Weibull and gamma distribution, both being special cases of the generalized gamma distribution [16],
are closely related and have similar PDFs. Weibull can easily be reparameterized [18] as follows

q(z
(`)
i ) = Weibull(α(`),β(`)), U ∼ Uniform(0, 1), z

(`)
i = β(`)(−ln(1− U))

1

α(`) (2)
Our inference network consists of a nonlinear graph encoder to learn the parameters of the variational
posterior as defined in Equation 2. The encoder model is based on the recognition network used in
ladder VAE [15] (but with Weibull approximate latent variables) that first uses a deterministic upward
pass to compute the approximate likelihood contributions from the data
{H(`)}L`=1 = GCN(A,S), R̂(`) = Softplus(H(`)W(`)

r ), Ŝ(`) = Softplus(H(`)W(`)
s ) (3)

The upward pass is followed by a stochastic downward pass to compute the generative distributions
and their variational parameters. We assume mean-field approximation and factorize the variational
distributional as

∏N
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i = ŝi

(L), β`
i = r̂i

(L) if ` = L, otherwiseα`
i = ŝi

(`)+Φ`+1z`+1
i , β`

i = r̂
(`)
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the SGVB training scheme [6], we train our gamma ladder VAE by maximizing the evidence lower
bound (ELBO) where all q(z(`)n ), except for the top-layer q(zn)(L), are conditioned on z(`+1)

n .

L =

N∑
i=1

N∑
j=1

E
[
ln p(Aij |z(1)

i ,z
(1)
j )
]
−
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n=1
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E
[
ln q(z(l)

n )− ln p(z(l)
n )
]

(5)

5 Experiments
We refer to our model as LGVG (Ladder Gamma Variational Autoencoder for Graphs) and its
version with side-information as LGVG-X. The LGVG-X variant generates the side-information
(when available) using the bottom-most node embedding. We first evaluate our model on the link-
prediction task over 4 real-world benchmark graph datasets (see table 1) comparing it against other
methods. As shown in Table 1, our model has competitive performance with other state-of-the-art
methods.

Next, we evaluate our model on synthetic datasets for qualitative analyis (e.g., inferred node embed-
dings/communities). We generate two synthetic datasets having 150 nodes. There are 10 overlapping
communities in the first dataset and 10 non-overlapping in the second. Figure 5 shows the learned
latent embeddings by LGVG in comparison to the embedding learned using the vanilla-GCN.

We also conduct a qualitative experiment on the real-world NIPS12 co-authorship dataset and
examine the community structure discovered by our model. See table 3 in Appendix which shows
communities learned by LGVG. Our model can learn a hierarchical community structure, and we
show an illustration for the same in Fig. 4.

6 Conclusion
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Table 1: Average Precision (AP).
Method NIPS12 Cora Citeseer Pubmed

SC [17] 0.9022± 0.0003 0.8850± 0.0000 0.8500± 0.0001 0.8780± 0.0001
DW [14] 0.8634± 0.0000 0.8500± 0.0000 0.8360± 0.0001 0.8410± 0.0000
VGAE [9] 0.9111± 0.0025 0.9260± 0.0001 0.9200± 0.0002 0.9470± 0.0002
DGLFRM [11] 0.9005± 0.0027 0.9376± 0.0022 0.9438± 0.0073 0.9497± 0.0035
EPM-SGVB [19] 0.9086± 0.0129 0.8666± 0.0109 0.8259± 0.0172 0.8600± 0.0047

LGVG 0.9260± 0.0068 0.9254± 0.0068 0.9130± 0.0112 0.9545± 0.0024
LGVG-X 0.9260± 0.0068 0.9502± 0.0061 0.9624± 0.0067 0.9559± 0.0017

(a) Overlapping (b) LGVG (c) Reconstructed (d) VGAE

(e) Nonoverlapping (f) LGVG (g) Reconstructed (h) VGAE

Figure 2: (a-d) Experiments on the overlapping synthetic dataset. (a) Training adjacency matrix (Black, White
and Gray denote no-link, link and the 15% masked respectively). (b) Last layer node embeddings learned by the
LGVG. (c) Reconstructed graph using LGVG model indicating probability of link between nodes (white (black)
suggest high probability of link (no-link)). (d) Node embeddings learned by the VGAE model. (e-h) Experiments
on the non-overlapping synthetic dataset. (e) The training adjacency matrix. (f) The node embeddings learned
by the LGVG. (g) Reconstructed graph using LGVG model. (h) Node embeddings learned by the VGAE model.

Figure 3: Above plot shows hierarchical communities
discovered by a 2-layer LGVG model. Top layer shows
latent communities inferred from Z(2)) and bottom layer
shows inferred communities from Z(1). Communities
from lower layer are mapped to upper layer by inspecting
top-5 corresponding entries in Φ(2).

We have presented a novel, gamma ladder VAE
model for graph-structured data, that enables
us to infer multilayered embeddings (in form
of multiple layers of stochastic variables) for
the nodes in a graph. Besides having strong
predictive power, the embeddings learned by
our model are sparse and directly interpretable.
Our model outperforms recently proposed deep
generative models that are based on a vanilla
VAE architecture, both on quantitative metrics
as well as on qualitative analysis tasks (being
able to learn embeddings which are directly in-
terpretable, eliminating the need for an extra
clustering/dimensionality reduction step which
is required for dense Gaussian embeddings) us-
ing the learned deep representations of the nodes.
We believe our model to be an important first
step in bringing together the interpretability of
hierarchical, multilayer latent variable models
such as ladder variational autoencoders and the
strong representational power of graph encoders,
such as graph convolutional networks, for mod-
eling graph-structured data.
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A Appendix

A.1 Experiment details

Link Prediction: We evaluated our model and the baselines for link-prediction on 4 real-world
benchmark graph datasets - NIPS12, Cora, Citeseer, and Pubmed . For our model, we set the gamma
shape hyperparameters as 10−5 for the topmost layer and for subsequent layers, shape parameter is
drawn as per Eq. 1. The gamma rate parameter was set as 10−3 for top layer, and 10−2 for subsequent
layers (the model was mostly insensitive to the choice of the rate parameter). We used two layers
in both encoder and decoder network with layers sizes (bottom and top) being 128 and 64 for Cora,
Citeseer and Pubmed, and 64 and 32 for NIPS12. Model was trained on all datasets for 500 epochs.
The reason of slightly different settings for evaluation of NIPS12 is extremely sparse connectivity
compared to other datasets. Our evaluation scheme is similar to that of [9], and the reported scores are
averaged over 10 random splits of the data. The results for link-prediction task are shown in Table 1
and Table 2, in which we have used the Average Precision (AP) and AUC-ROC scores as the metric.
In addition to the models in [9], we compare our results with a fast SGVB-based implementation of
EPM (which is roughly a single layered version of our model) [19].

Table 2: ROC (AUC).

Method NIPS12 Cora Citeseer Pubmed
SC [17] 0.8792 ± 0.0003 0.8460 ± 0.0001 0.8050 ± 0.0001 0.8420 ± 0.0002
DW [14] 0.8058 ± 0.0000 0.8310 ± 0.0001 0.8050 ± 0.0002 0.8440 ± 0.0000
VGAE [9] 0.9029 ± 0.0031 0.9140 ± 0.0001 0.9080 ± 0.0002 0.9440 ± 0.0002
DGLFRM [11] 0.8734 ± 0.0043 0.9343 ± 0.0023 0.9379 ± 0.0032 0.9395 ± 0.0008
EPM-SGVB [19] 0.8736 ± 0.0155 0.8489 ± 0.0114 0.7714 ± 0.0181 0.8339 ± 0.0079

LGVG (this paper) 0.9100 ± 0.0084 0.9320 ± 0.0051 0.9128 ± 0.0116 0.9601 ± 0.0017
LGVG-X (this paper) 0.9100 ± 0.0084 0.9524 ± 0.0049 0.9615 ± 0.0071 0.9590 ± 0.0012

Table 3: Example of topics inferred by our model on NIPS data. For each community, authors are ranked by
their strengths in respective communities. Authors belonging to multiple communities are highlighted.

Inferred topic(s) Authors

Learning Th. & Optimization Zhao J, Platt J, Bartlett P, Shawe-Taylor J, Helmke U, Hancock T, Mason L, Spence C, Campbell C,
Scholkopf B

Reinforcement Learning Singh S, Barto A, Horn D, Connolly C, Sutton R, Berthier N, Koller D, Ginpen R, Precup D, Rodriguez
A

Computer Vision Rosenfeld R, Bengio Y, LeCun Y, Singer Y, Isabelle J, Mato G, Turiel A, Nadal J, Boser B, Bengio S

Probabilistic Learning Williams C, Jordan M, Goldberg P, Vivarelli F, Bishop C, Ghahramani Z, Lawrence N, Ueda N, Teh
Y, Hinton G, Ng A

Neuroscience Goldstein M, Burnod Y, Osterholtz L, Touretzky D, Burger M, de-Oliveira P, Russell S, Sumida R,
Martignon L, Goldberg P, Principe J

Character recognition Janow R, Lee R, Vapnik V, LeCun Y, Cortes C, Denker J, Sackinger E, Nohl C, Solla S, Jackel L,
Boser B

Community discovery in NIPS12 dataset: We train both our model and VGAE with same last layer
size (128). Table 3 shows communities learned by LGVG. It can be seen that some of the members
appear in multiple communities (Yann LeCun, Paul Goldberg for instance appear in two different
communities). In addition, our model can learn a hierarchical community structure, and we show an
illustration for the same in Fig. 4. For the tree structured visualization (repeated in Appendix for ease
of access), we first pick a few communities inferred from last layer embeddings (Z(1)). Then, for
each community i, we find out the communities j in upper layer (Z(2)) having maximum connection
weight as per Φ (φ(2)

ij
) (top-5). We connect each community at a higher layer, to one in lower layer

by edges with weights proportional to the connection strength between them. It can be seen that
communities at a higher level are mixture of communities at a lower level.
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A.2 Dataset details:

We consider several real world datasets, with three datasets also consisting of side information
(in form of node features and node labels for a fraction of nodes), and other datasets only having
node connectivity information. For the datasets with node labels, we use training label fraction as
mentioned in [8]. Details of each dataset are as follows:

• NIPS12: The NIPS12 coauthor network 3 includes coauthorship data for all 2037 authors in
NIPS vols 0-12, with 3134 edges. It has no side information.

• Cora: Cora network is a citation network consisting of 2708 documents. It contains sparse
bag-of-words feature vectors of length 1433 for each document. These are used as node
features. Cora dataset also has node labels for 140 nodes.

• Citeseer: Citeseer is a citation network consisting of 3312 scientific publications from
six categories - agents, AI, databases, human computer interaction, machine learning and
information retrieval. The side information for the dataset is the category label for each
paper which is converted into a one-hot representation. This dataset also has node labels for
120 nodes. The network has total 4552 links.
• Pubmed: It is a citation network consisting of 19717 nodes. The dataset contains sparse

bag-of-word features of length 500 for each document. Additionally, this dataset has node
labels for 60 nodes. The network has total 44324 links.

Figure 4: Above plot shows a portion of hierarchical communities discovered by a 2-layer LGVG model. It can
be clearly seen how lower level communities are more specific, and communities at a higher level more general
(union of one or more lower level communities. Top layer shows latent communities inferred from Z(2)) and
bottom layer shows inferred communities from Z(1). Communities from lower layer are mapped to upper layer
by inspecting top-5 corresponding entries in Φ(2).

3http://www.cs.nyu.edu/ roweis/data.html
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