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Abstract

Learning graph data is of huge interest to the machine learning community. Re-
cently, graph neural network models motivated by algebraic invariance and equiv-
ariance principles have been proposed (Ravanbakhsh et al., 2017; Kondor et al.,
2018; Maron et al., 2019b). These models were shown to be universal (Maron
et al., 2019c; Keriven and Peyré, 2019), in contrast to the popular message passing
models Xu et al. (2019); Morris et al. (2018). In this note we formulate several
open problems aiming at characterizing the trade-off between expressive power
and complexity of these models.

A basic requirement from a hypothesis class is approximation power. Classical results in neural
network literature establish approximation power of Multilayer Perceptron (MLP) (Cybenko, 1989).
In a nutshell, given an arbitrary continuous function g : Rd → R it can be approximated with an
MLP f over a bounded Euclidean domain Ω ⊂ Rd. If one desires to learn graph data G = (V,E),
|V | = n, one approach is to represent G as an Euclidean vector in Rn×n and use an MLP. This
approach enjoys the expressiveness (i.e., approximation power) of MLPs however suffers from three
main drawbacks: (i) it can only work on graphs of fixed size, n = const; (ii) it is not well-defined
on graphs. That is, encoding a graph G as a vector x ∈ Rn2

is done once the vertices V are put in
order. Two different orders will lead to two different vectors x 6= x′ and a general MLP will give
f(x) 6= f(x′), providing a different output to the same graph; (iii) One of the main implications of
the previous phenomenon is that MLPs suffer from poor generalization on graph data.

A standard approach to alleviate these issues is to use neural networks that are by construction
invariant to vertex ordering. Unfortunately, most previous attempts (and all scalable ones) to build
such models resulted in a strict decrease in the expressiveness, that is, in the ability of the model to
approximate arbitrary invariant graph functions. Therefore, the following remains an open problem:

Meta-problem: Find a scalable graph neural network model that is invariant and expressive.

One notion suggested to test expressiveness of graph networks is to compare them to the k-Weisfeiler-
Lehman (WL) graph isomorphism tests (Grohe, 2017). The logic is: if an invariant network can
distinguish between two non-isomorphic graphs it can attach a different label to each graph.

The popular message passing models (Battaglia et al., 2016; Gilmer et al., 2017) are equivariant or
invariant by construction but unfortunately known to have expressive power bounded by the 1-WL
test, a.k.a. the color refinement algorithm (Xu et al., 2019; Morris et al., 2018).

Graph Invariant Networks (IGNs) use a 2-dimensional adjacency-like feature tensors, Rn×n as the
graph representation method for neural networks (Kondor et al., 2018; Maron et al., 2019b,a; Chen
et al., 2019). IGNs are composed of permutation equivariant layers, Li, i = 1, . . . , I followed by a
permutation-invariant layer H and an fully connected network M . An IGN is defined by

F = M ◦H ◦ Ld ◦ · · · ◦ L1. (1)

We make a distinction between linear equivariant and/or invariant layers and polynomial layers.
We accordingly refer to linear IGN and polynomial IGN. Higher-order k-dimensional tensors, that
represent high order interactions between graph nodes (e.g., between triplets of vertices), were also
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Figure 1: Current results on expressive power of Invariant Graph Networks (IGN).

suggested as intermediate representations in the network. We will denote by k-IGN an IGN with
maximal tensor order of k (e.g., the order of an adjacency matrix Rn2

is two).

Known results. Following (Morris et al., 2018; Xu et al., 2019) that analyzed the message passing
model, several results regarding the approximation power of IGNs were proved. These results are
summarized in Figure 1.

(i) Maron et al. (2019b) proved that linear 2-IGN is at-least as powerful as the general message
passing model in Gilmer et al. (2017). Chen et al. (2019) proved that linear 2-IGNs are not
universal, namely, cannot approximate arbitrary permutation invariant graph functions. Maron
et al. (2019a) proved that a linear k-IGN can implement the k-Weisfeiler-Lehman (WL) graph
isomorphism test. This implies that any increase in the tensor order, for k > 2, results in
additional representation power over message passing.

(ii) Maron et al. (2019c) and Keriven and Peyré (2019) proved that linear k-IGNs are universal
approximators of permutation invariant functions on graph data for large enough k. For example
the k currently known is polynomial in n, i.e., k = O(n4), producing intractable size tensors.

(iii) Maron et al. (2019a) proved that quadratic 2-IGN, in particular linear 2-IGN with the addition of
quadratic equivariant layer (i.e., matrix multiplication), is as powerful as the folklore 2-WL test
which is as powerful as the 3-WL test (Grohe and Otto, 2015). This implies that quadratic 2-IGN
is strictly more expressive than message passing. Surprisingly, just using a single equivariant
linear operator (scaled identity) and single equivariant quadratic operator (matrix multiplication)
is already enough to achieve 3-WL expressiveness.

(iv) Yarotsky (2018) proved that polynomial IGNs (i.e., the layers are equivariant polynomial maps)
are universal.

Open problems. As a possible road map toward our meta-problem and to better understand the
expressiveness landscape, we offer the following open problems:

We suspect that k-IGNs cannot implement higher WL tests. Proving the following problem will show
(along with (i) above) that the k-IGN hierarchy exactly matches the k-WL hierarchy, which is a nice
theoretical result.

Problem 1. Upper bounds on linear IGN expressive power. Can linear k-IGN implement k+1-WL
test for some k?

A natural extension of linear k-IGNs is polynomials k-IGN, or more specifically (k, l)-IGNs, where
using polynomial equivariant/invariant layers of degree up to l and tensors of order of up to k is
permitted. We conjecture that in general incorporating polynomial layers in IGNs allows us to
get more expressive models while staying with a low tensor order representation for memory and
computational efficiency. One result in this direction is (iii) above.

Problem 2. Polynomial IGN expressive power. Can (k, l)-IGN implement (k + s)-WL, s ≥ 1?

Result (iii) also demonstrates that not all polynomial layers are needed for achieving better expres-
siveness. Another practically important problem is

Problem 3. Characterize minimal polynomial bases of layers of (k, l)-IGN (in terms of number of
elements or some computational complexity measure) that achieve k-WL expressiveness.
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