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Abstract

We introduce a new neural network architecture, Multimodal Neural Graph Mem-
ory Networks (MN-GMN), for visual question answering (VQA). MN-GMN uses
graph structure with different region features as node attributes and applies the re-
cently proposed Graph Network (GN) to reason about objects and their interactions
in the scene context. The MN-GMN has four modules. The input module generates
a set of visual feature vectors plus a set of encoded region-grounded captions
(RGCs) for the image. The RGCs capture object attributes and their relationships.
Each visual feature vector/RGC is specified with a bounding-box. Two GNs are
constructed from the input module using the visual feature vectors and RGCs. Each
node in a GN iteratively computes a question-guided contextualized representation
of the visual/textual information assigned to it. To combine the information from
both GNs, each node writes the updated representations to a spatial memory. The
final state of the memory cells are fed into an answer module to predict an answer.
Experiments show MN-GMN outperforms the state-of-the-art on VQA dataset.

1 Introduction

Visual question answering (VQA) has been recently introduced as a grand challenge for AI. This paper
proposes a new neural network architecture for VQA based on the recent Graph Network (GN) [3].
The pair-wise interactions between various regions of an image and spatial context in both horizontal
and vertical directions are important to answer questions about objects and their interactions in the
scene context. For example, to answer How many surfers are in the picture? a model may need to
aggregate information from multiple, possibly distant, regions. Our new architecture (see Figure 1),
Multimodal Neural Graph Memory Network (MN-GMN), uses a graph structure to represent pairwise
interactions between visual/textual features (nodes) from different regions of an image. GNs provide
a context-aware neural mechanism for computing a feature for each node that represents complex
interactions with other nodes. This enables our MN-GMN to answer questions which need reasoning
about complex arrangements of objects in a scene.

The major novel aspect of our approach is that we exploit the flexibility of GNs to combine information
from two different sources: visual features from different image regions, and textual features based
on region-grounded captions (RGCs). An RGC detector is learned by transfer learning from Visual
Genome dataset. Like visual features, an RGC is specified with a bounding-box. The RGCs capture
object attributes and relationships that are often useful to answer visual questions, but may not be
represented by low-level visual features. For example, in Figure 1, to answer Is the water calm?,
the caption a wave in the ocean is informative; the caption the water is blue specifies an attribute of
water; the captions a sailboat in the water and surfer riding a wave describe interactions between
objects. Captions also incorporate commonsense knowledge that may not be represented by an
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Figure 1: Multimodal Neural Graph Memory Networks for VQA.
end-to-end model especially with currently available small VQA datasets. Our multimodal graph
memory network comprises a visual GN and a textual GN, one for each information source. Each
node of the two GNs iteratively computes a question-guided contextualized representation of the
visual/textual information at the bounding-box assigned to it. Our architecture has an external spatial
memory which is designed to combine information across the modalities: each node writes the
updated representations to the external memory, which is composed of memory cells arranged in a
2D grid. The final state of the memory cells are then fed into the answer module to predict an answer.

2 Related Work

Recently, a few models are proposed which can learn the interactions between image regions.
The graph learner model [16], merges a graph representation of the image based on the question,
with a graph convolutional network, to learn visual features that can represent question specific
interactions. [23] proposed to reason over a visual representation of the input image called scene
graph which represents object and their relationships explicitly. [14] introduced a VQA model called
Relation-aware Graph Attention Network (ReGAT). Guided by the input question, ReGAT encodes
an image into a graph that represents relations among visual objects. The ReGAT is trained on Visual
Genome dataset [12]. [7] introduced a graph neural network model called Relation Networks which
uses multilayer perceptron models to reason over all pairs of local image features extracted from a
spatially localized grid of image regions. Dynamic tree structures have been used in VQA to capture
the visual context of image objects [19].

3 Our Proposed Architecture

Figure 1 shows our MN-GMN architecture which has 4 modules. We now describe these modules.

Input Module. The input module has two components: A deep CNN (e.g., Bottom-Up Attention [1],
VGGNet, ResNet, etc.), and a region-grounded caption generation model which incorporates a set of
RGCs to answer questions about object attributes and their relationships. To extract visual features,
we use the Bottom-Up Attention model [1]. The features are obtained via a Faster R-CNN framework
and 101-layer ResNet which attend to specific image regions. Using a fixed threshold on object
detection, we extract N 2048-dimensional image features from N different regions of the image. The
value of N depends on the image, and ranges from 10 to 100. We concatenate each feature vector
with its bounding-box to obtain a vector denoted by xi, (i = 1, . . . , N). The RGCs are generated by
a state-of-the-art dense captioning model. Then, they are encoded with a GRU and a parser [18] (see
supplementary for more detail). An encoded RGC is denoted by x̃i ∈ RD.

Question Module. We encode a question using final hidden state of a GRU, denoted by q, and the
same dictionary as we use for captions to match the words in a caption with the words in a question.
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Multimodal Graph Memory Network Module. Given a set of visual feature vectors, a set of
encoded RGCs and the encoded question, the multimodal graph memory network module produces a
vector representation of the relevant information based on the encoded question. The memory chooses
which parts of the inputs to focus on using an attention mechanism. Unlike previous works [22, 21],
our memory network module is multimodal and relational. That is, it employs both textual and visual
information of the input image regions, and it exploits pair-wise interactions between each pair of
visual/textual features using a visual/textual GN. Formally, the multimodal graph memory network is
composed of a visual GN G = (u,V, E) with N nodes, a textual GN G̃ = (ũ, Ṽ, Ẽ) with Ñ nodes,
and an external spatial memory. Each node of the visual GN represents a visual feature with an
associated bounding-box. Similarly, each node of the textual GN has a bounding-box corresponds to a
detected RGC of the image. In both GNs, we connect two nodes via two forward and backward edges
if they are nearby (i.e., the Euclidean distance between the normalized center of their bounding-boxes
is less than γ). Note that even if two nodes of a GN are not neighbors, they may still communicate
via massage passing mechanism of the GN. The external memory is a network of memory cells
arranged in a P ×Q two-dimensional grid. Each cell has a fixed location corresponds to a specific
(H/P ) × (W/Q) region in the image, where H and W are height and width of the image. Each
node of the visual/textual GN sends its information to a memory cell, if its bounding-box covers
the location of the cell. Since the bounding-boxes may overlap, a cell may get information from
multiple nodes. The external memory network is responsible for aggregating the information from
both GNs. It also resolves the redundancy introduced by overlapping bounding-boxes, which causes
difficulties for example with counting questions. To initialize each node attribute of the visual GN,
we combine a visual feature vector extracted from a region of the image with the encoded question
using multimodal compact bilinear (MCB) pooling [5] as vi = q ? xi, where ? represents the MCB
pooling. Similarly, we initialize each node attribute of the textual GN as ṽi = q� x̃i, where � is
the element-wise multiplication. We use the MCB to combine the visual features with the encoded
question since the question and visual features are from different modalities. The global attribute u
is initialized by a global feature vector of the image extracted from the last layer of the 101-layer
ResNet, and the global attribute ũ is initialized with the encoded question. The edge features of the
GNs and memory cells are initialized with zero vectors. At each iteration, we first update the GNs.
Then, we we update the content of the memory cells. We update edge attributes, node attributes and
the global attribute of both GNs as described in Algorithm 1. For each GN, we use three different
GRUs to implement the functions φe and φv, φu. The ρe→v is a simple element-wise summation.
The ρv→u and ρe→u for visual GN are implemented as

v̄′ = ψ
(∑N

i=1 σ(W1vi + b1)� ψ(W2vi + b2)
)

(1)

ē′ = ψ
(∑M

k=1 σ(W3ek + b3)� ψ(W4ek + b4)
)

(2)

where, σ and ψ are the sigmoid and tangent hyperbolic activation functions, and Wi, bi, i = 1, . . . , 4,
are trainable parameters. This allows to incorporate information from the question for computing the
attention weights using the sigmoid function for each node/edge. The ρv→u and ρe→u for the textual
GN are implemented in a similar way. Let, v̄p,q = 1

|Np,q|
∑

i∈Np,q
vi and ¯̃vp,q = 1

|Ñp,q|

∑
i∈Ñp,q

ṽi,

where Np,q and Ñp,q are the set of nodes which are connected to the memory cell (p, q) in the visual
and textual GNs, respectively. Each memory cell is updated as

m̄p,q = f(mp−1,q,mp,q−1,mp,q+1,mp+1,q) (3)

m′p,q = GRU([v̄p,q, ¯̃vp,q, m̄p,q],mp,q) (4)

where f is a neural network layer which aggregates the memories from the neighboring cells. We
repeat these steps for two iterations. As observed by [13], iterating over the inputs allows the memory
network to take several reasoning steps, which some questions require.

Answer Module. The answer module predicts an answer using a GN called answer GN. The nodes
of the answer GN are the external spatial memory cells. However, there is an edge between every
ordered pair of the nodes (cells), hence the answer GN is a complete graph. This supports reasoning
across distant regions of the image. Let m◦p,q be the final state of the memory cell at location (p, q).
We initialize the node attributes of the answer GN denoted by v◦p,q as v◦p,q = m◦p,q. The edge
attributes are initialized using the one-hot representation of the location of the sender and receiver
memory cells. That is, the edge attribute of the edge going from memory cell at location (p, q) to
(p′, q′), is initialized with a vector of size 2P + 2Q which is computed by concatenating the one-hot
representation of p, q, p′, and q′. The global attribute of the answer GN is initialized with a vector of
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zeros. Then, we update the edge attributes, the node attributes and the global attribute of the answer
GN as described in Algorithm 1. As before, we use three different GRUs to implement functions φe
and φv, φu. The ρe→v is a simple element-wise summation. The ρv→u and ρe→u are implemented
as 1 and 2, but with different set of parameters. The answer module predicts an answer as

p̂ = σ
(
Wg(u◦) + W̃g̃(u◦) + b

)
(5)

where, u◦ is the updated global attribute of the answer GN, W̃ ∈ RY×300,W ∈ RY×2048,b ∈ RY

are trainable parameters, g, g̃ are non-linear layers, and Y is the number of possible answers. The
loss for a single sample is defined as L = −

∑Y
i=1 pi log(p̂i) + (1− pi) log(1− p̂i) where, p̂i is the

ith element of p̂, and pi = 1.0 if A ≥ 3 annotators give the ith answer word, otherwise pi = A/3.

4 Experiments

In this section, we explain the datasets, baseline models and evaluation metric that we use in our
experiments. Then, the experimental results are presented and discussed.

Dataset. VQA v2.0 [2] includes 82, 783 training images, 40, 504 validation images, and 81, 434
testing images. There are 443, 757 training questions, 214, 354 validation questions, and 447, 793
test questions in this dataset. A subset of the standard test set, called test-dev, contains 107, 394
questions. Each question has 10 candidate answers generated by humans.

Baseline Methods. For VQA dataset, we compare our model with several architectures developed
recently including the state-of-the-art models ReGAT, BAN, VCTREE, and MuRel. The ReGAT
uses Visual Genome relationships as external training data. MAN [15] is a memory-augmented
neural network which attends to each training exemplar to answer visual questions, even when the
answers happen infrequently in the training set. The Count [25] is a neural network model designed
to count objects from object proposals. We implement several lesion architectures. The N-GMN
model only uses the visual GN (no textual GN nor spatial memory). This model evaluates the effect
of incorporating RGCs. After two iterations, the global feature vector of the visual GN is used as u◦
in Eq. 5 to generate an answer. The MN-GMN− model does not use the external spatial memory.
After two iterations, the global feature vector of the visual and textual GNs are concatenated and fed
into a non-linear layer to generate u◦ in Eq. 5. Finally, MN-GMN is our full model.

Results and Discussion. Our experimental results on VQA dataset are reported in Table 1. MN-
GMN− outperforms N-GMN. This shows that RGCs help to improve the accuracy. RGCs are
especially useful for answering the Other and Yes/No question types. Our full model MN-GMN
outperforms MN-GMN−. This shows that applying external spatial memory is effective, especially
for Number questions. The full model’s accuracy is higher than the baselines. The supplement reports
similar results on Visual7W and CLEVR datasets, as well as qualitative evaluation.

Test-dev Test-std
Model Y/N Num Other All Y/N Num Other All
MAN [15] - - - - 79.2 39.5 52.6 62.1
Count [25] 83.1 51.6 59.0 68.1 83.6 51.4 59.1 68.4
MFH [24] 84.3 50.7 60.5 68.8 - - - -
Buttom-Up [20, 1] 81.8 44.2 56.1 65.3 - - - 65.7
G-learner [16] - - - - 82.9 47.1 56.2 66.2
v-AGCN [23] 82.4 45.9 6.5 65.9 82.6 45.1 56.7 66.2
MuRel [4] 84.8 49.8 57.9 68.0 - - - 68.4
VCTREE [19] 84.3 47.8 59.1 68.2 84.6 47.4 59.3 68.5
BAN [11] 85.4 54.0 60.5 70.0 - - - 70.4
ReGAT [14] 86.1 54.4 60.3 70.3 - - - 70.6
N-GMN 86.1 53.5 61.2 70.6 86.7 53.6 61.8 71.2
MN-GMN− 88.0 53.5 63.8 72.6 88.5 53.7 64.2 73.1
MN-GMN 88.2 56.0 64.2 73.2 88.3 56.1 64.5 73.5

Table 1: Accuracy percentage of various models on VQA-v2.0.

5 Conclusions

Multi-modal Neural Graph Memory Networks are a new architecture for VQA. MN-GMN represents
bi-modal local features as node attributes in a graph. It leverages Graph Networks to reason about
objects and their interactions in the scene. MN-GMN showed superior quantitative and qualitative
performance, compared to both state-of-the-art comparison and lesion approaches on VQA v2.0.
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Supplementary Materials

1 Qualitative Evaluation

Figure S1 and Figure S2 show how MN-GMN can answer a question correctly by incorporating RGCs, whereas
N-GMN gives the wrong answer. Figure S3 and Figure S4 illustrate visualization of the attention weights with
MN-GMN to answer a Number question. For this example, we compute the attention weights which are used to
obtain v̄′ for each memory cell. (More precisely, the magnitude of the sigmoid output which implements ρv→u

for the external spatial memory; cf. Eq. 1). Each attention weight shows the importance of a fixed region in a
14× 14 grid of cells to the question. Figure S5 and Figure S6 show VQA examples on the CLEVR dataset.

Figure S1: MN-GMN provides the correct answer using a cloudy blue sky.

Figure S2: MN-GMN provides the correct answer using white and black tennis shoes
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Figure S3: Visualization of the attention weights for a 14× 14 grid of memory cells. The red regions
get higher attention.
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Figure S4: Visualization of the attention weights for a 14× 14 grid of memory cells. The red regions
get higher attention.
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Figure S5: Example VQA with N-GMN on CLEVR dataset.

Figure S6: Example VQA with N-GMN on CLEVR dataset.
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2 Graph Networks

In this section, we briefly explain the graph networks (GN) framework [3]. In GN framework, a graph is
represented by a 3-tuple G = (u,V, E), where u is a graph-level (global) attribute. The V = {vi}i=1:N

is a set of node attributes, where vi is a node attribute of node i, and N is the number of nodes. The
E = {(ek, rk, sk)}k=1:M is a set of edges, where ek is an edge attribute for the edge going from node sk
to node rk, and M is the number of edges. A GN block has three update functions φ and three aggregation
functions ρ. Given an input graph, a GN block updates the graph using the update and aggregation functions.
The computational steps in a GN are represented in Algorithm 1. The φe is mapped over entire edges to calculate
per-edge updates, φv is mapped over entire nodes to calculate per-node updates, φu is used to update the global
attribute. The ρ’s should be unvarying to permutations of their inputs, and must be flexible to varying number of
arguments, e.g. maximum, summation, etc.

Algorithm 1: Computational steps in a Graph Network block [3]
Input :A graph G = (u,V, E)
Output
:

The updated graph G′ = (u′,V ′, E ′)

(1) Function GraphNetwork(E , V,u)
(2) for k ← 1 to M do
(3) e′k ← φe(ek,vrk ,vsk ,u) . Compute new edge attributes
(4) end
(5) for i← 1 to N do
(6) E ′i ← {(e′k, rk, sk)}rk=i,k=1:M

(7) ē′i ← ρe→v(E ′i) . Aggregate edge attributes for each node
(8) v′i ← φv(ē′i,vi,u) . Compute new node attributes
(9) end

(10) V ′ ← {v′i}i=1:N

(11) E ′ ← {(e′k, rk, sk)}k=1:M

(12) ē′ ← ρe→u(E ′) . Aggregate edge attributes for the whole graph
(13) v̄′ ← ρv→u(V ′) . Aggregate node attributes for the whole graph
(14) u′ ← φu(ē′, v̄′,u) . Compute new global attribute
(15) return (u′,V ′, E ′)

3 Encoding the Region-Grounded Captions

The second component of the input module applies a dense captioning model from https://github.com/
jcjohnson/densecap to extract a set of RGCs for the input image [10]. This model contains a CNN (VGGNet),
a dense localization layer, and an RNN language model that generates the captions. The model has been trained
on RGCs from the Visual Genome dataset. Through transfer learning, our model is leveraging the caption
annotations. In contrast with other datasets which only include full image captions, or ground words of image
captions in regions, the Visual Genome provides individual region captions. Each RGC has a caption, a bounding-
box, and a confidence score. For each image, we select all RGCs with a confidence score greater than 1.5. To
encode a caption, we first create a dictionary using all words in the captions and questions. We preprocess
the captions and questions with basic tokenization by converting all sentences to lower case and throwing
away non-alphanumeric characters. We map the words to a dense vector representation using a trainable word
embedding matrix L ∈ L×D, where D is the dimensionality of the semantic space, and L is the size of the
dictionary. To initialize the word embeddings, we use the pretrained GloVe vectors. The words not occur in the
pretrained word embedding model are initialized with zeros. We encode a caption using a GRU. Given a caption,
the hidden state of the GRU for the i-th word is computed by ci = GRU(si, ci−1), where si is the semantic
representation of the i-th word in the caption. The final hidden state of the GRU, denoted by c ∈ RD , is used as
a vector representation of the caption. We reset the GRU after feeding each caption.

The encoded captions may not properly represent the objects in an image, the relationships between them and
the object attributes, specially for caption with many words and a complex parse tree. Thus, we enrich this
representation by utilizing a parser [18] that takes a single caption and parses it into a set of relationship triplets
(possibly empty), a set of objects and their attributes. For example, given caption orange and white cat laying on
a wooden bench, the parser outputs a triplet cat-lay on-bench, objects cat and bench, and attributes cat-white,
cat-orange and bench-wooden. For Visual Genome dataset, the parser produces less than three relationships
for about %98 of the captions. We obtain a fixed length representation for the output of the parser, denoted
by c̃ ∈ R14D by allocating the embedding of 14 words: 6 words for up to two relationship triplets and 8
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words for up to 4 objects and their attributes. For example, for the aforementioned example, the fixed length
representation is the concatenation of the embedding of each word in sequence ≺cat-lay on-bench,x-x-x,bench-
wooden,cat-orange,cat-white,x-x� where x is a special token to represent an empty slot. We use an arbitrary
order but fixed for all RCGs, to create the sequences. Each RGC has also a bounding-box specified by its
coordinates r̃ = (r̃x, r̃y, r̃x′ , r̃y′), where (r̃x, r̃y) and (r̃x′ , r̃y′) are the top-left and bottom-right corners of
the bounding-box which are normalized to have a value between 0 and 1 based on the height and width of
the image. For each RGC, we project the concatenation of r̃, c and c̃ to a space of dimensionality D using a
densely-connected layer with ReLU activation function to obtain a vector representation denoted by x̃ ∈ RD .

4 Training Details and Optimization

The MN-GMN is implemented in TensorFlow framework. We use a library from https://github.com/
deepmind/graph_nets to implement the GNs. To minimize the loss, we apply RMSprop optimization
algorithm with learning rate 0.0001 and minibatches of size 100. To prevent overfitting, dropout with probability
0.5 and early stopping are applied. During training, all parameters are tuned except for the weights of the
CNN and RGC detector components to avoid overfitting. We set the γ to 0.5 in our experiments. We choose
correct answers that appear more than 8 times. This makes Y = 3, 110 candidate answers. We use the standard
metric [2]: an answer is correct if at least 3 people agree. The output dimension of the MCB is set to 512. The
dimension of the hidden layer in both RGC and question GRUs is set to 512. Also, we set P,Q = 14 and
D = 512. Our model takes around 6 hours to train on two NVIDIA Titan X GPUs. Following [20], to exploit
prior linguistic information about the candidate answers, the GloVe embeddings of the answer words are used
to initialize the rows of the W̃ in the answer module. Similarly, to utilize prior visual information about the
candidate answers, a visual embedding is used to initialize the rows of W. The visual embedding is obtained by
retrieving 10 image from Google Images for each word. Then, the images are encoded using the ResNet-101
pretrained on ImageNet to obtain a feature vector of size 2048. For each word, the average of the feature vectors
is used to initialize a row of W.

5 Results on Visual7W and CLEVR

We also experiment on Visual7W [26] dataset. The Visual7W dataset includes 47, 300 images which occur
in both Visual Genome and MS-COCO datasets. We train and evaluate our model on telling questions of the
Visual7W which includes 28, 653 images. This set uses six types of questions: what (6%), where (48%), when
(16%), who (5%), why (10%), how (15%). The training, validation and test splits, contain 50%, 20%, 30% of
the QA pairs, respectively. For evaluation, Visual7W provides four candidate answers. The Visual7W has fewer
language biases compared to VQA.

For multiple choice task, the candidate answers are encoded by the last state of a GRU and concatenated
with u◦ using a neural network layer as ṕ = σ

(
ẃf́([u◦,a]) + b́

)
where, a is an encoded answer choice,

f́ is a non-linear layer, and ẃ, b́ are trainable parameters. For multiple choice task, the binary logistic loss
−p log(ṕ) − (1 − p) log(1 − ṕ) is used, where p is 1.0 for an (image,question,answer) triplet, if the answer
choice is correct, otherwise p is 0.

We also experiment on CLEVR dataset [8]. CLEVR evaluates different aspects of visual reasoning such as
attribute recognition, counting, comparison, logic, and spatial relationships. Each object in an image has the
following attributes: shape (cube, sphere, or cylinder), size (large or small), color (8 colors), and material (rubber
or metal). An object detector with 96 classes is trained using all combinations of the attributes by the Tensorflow
Object Detection API. Given an image, the output of the object detector is a set of object bounding-boxes with
their feature vectors. For CLEVR, we omit the textual GN, since the CLEVR images do not have rich textual
information.

Our results on Visual7W are reported in Table S1. Our N-GMN, MN-GMN−, and MN-GMN outperform the
baselines MLP, MAN and MCB+ATT. The results for our N-GMN+ on CLEVR in Table S2 are competitive
with the state-of-the-art PROGRAM-GEN. We emphasize that, unlike PROGRAM-GEN, our algorithm does not
exploit supervision from functional programming.
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Model What Where When Who Why How Avg
Human [26] 96.5 95.7 94.4 96.5 92.7 94.2 95.7
LSTM-ATT [26] 51.5 57.0 75.0 59.5 55.5 49.8 54.3
Concat+ATT [5] 47.8 56.9 74.1 62.3 52.7 51.2 52.8
MCB+ATT [5] 60.3 70.4 79.5 69.2 58.2 51.1 62.2
MAN [15] 62.2 68.9 76.8 66.4 57.8 52.9 62.8
MLP [7] 64.5 75.9 82.1 72.9 68.0 56.4 67.1
N-GMN 66.2 77.2 83.3 74.0 69.2 58.5 68.6
MN-GMN− 67.1 77.4 84.0 75.1 70.1 59.2 69.3
MN-GMN 67.3 77.4 84.0 75.0 70.3 59.4 69.5

Table S1: Accuracy Percentage on Visual7W.

Model All Exist Count Cmp-Int Q-At Cmp-At
HUMAN [8] 92.6 96.6 86.7 86.5 95.0 96.0
Q-TYPE MODE [8] 41.8 50.2 34.6 51.0 36.0 51.3
LSTM [8] 46.8 61.1 41.7 69.8 36.8 51.3
CNN+BOW [8] 48.4 59.5 38.9 51.1 48.3 51.8
CNN+LSTM [8] 52.3 65.2 43.7 67.1 49.3 53.0
CNN+LSTM+MCB [8] 51.4 63.4 42.1 66.4 49.0 51.0
CNN+LSTM+SA [8] 68.5 71.1 52.2 73.5 85.3 52.3
N2NMN [6] 83.3 85.7 68.5 85.0 90.0 88.8
CNN+LSTM+RN [17] 95.5 97.8 90.1 93.6 97.9 97.1
PROGRAM-GEN [9] 96.9 97.1 92.7 98.7 98.2 98.9
N-GMN− 95.6 97.7 90.3 93.5 98.0 97.3
N-GMN+ 96.3 98.0 91.8 94.8 98.1 98.1

Table S2: Accuracy Percentage on CLEVR. The N-GMN+ model only uses the visual GN and the
external spatial memory components (no textual GN).
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