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Abstract

In this work we address the problem of graph node alignment at the example of
Map Fusion (MF). Given two partly overlapping road networks, the goal is to
match nodes that represent the same locations in both networks. For this task we
propose a new model based on Graph Neural Networks (GNN). Existing GNN
approaches, which have recently been successfully applied on various tasks for
graph based data, show poor performance for the MF task. We hypothesize that this
is mainly caused by graph regions from the non-overlapping areas, as information
from those areas negatively affect the learned node representations. Therefore, our
model has an additional inductive bias and learns to ignore effects of nodes that do
not have a matching in the other graph. Our new model can easily be extended to
other graph alignment problems, e.g., for calculating graph similarities, or for the
alignment of entities in knowledge graphs, as well.

1 Introduction
In recent years the high relevance of graph-structured data has generally been accompanied by an
increased demand for algorithms that are able to take advantage from the rich body of relational
information encoded in graphs. However, in many domains, the entire knowledge base of a certain
domain is spread across multiple data sources, e.g., geo-spatial information are spread across various
map providing services, social information are spread across multiple social networks, or, somewhat
more general, knowledge bases are distributed across various knowledge graph databases.

In this work, we tackle the problem of knowledge fusion by developing a graph neural network model
that is able to fuse graph-structured data by learning node matchings. Given two partly overlapping
graphs, our approach aims at identifying nodes from both graphs that match to each other. The ultimate
goal is to align the graphs such that the information contained in both graphs can be fused properly. In
general, the node matching problem is of high relevance in many applications including the fusion of
road networks, also called map fusion [1], the matching of knowledge graphs [2, 3, 4, 5, 6, 7, 8, 9, 10],
the alignment of social networks [11], or to enable efficient graph comparison [12, 13]. Traditional
methods addressing the graph alignment problem typically rely on calculating distances between
manually engineered node and edge features. The distances are used to generate pairs of nodes that
serve as matching candidates and the set of candidates is subsequently optimized by incorporating
the nodes’ neighborhood information [1, 14]. However, those approaches require non-trivial, manual
parameter tuning, do not generalize well to unseen data and suffer from high complexities which
makes them impractical. More recent works have applied graph neural networks (GNNs) which
have proven to be particularly suitable for the graph alignment task [8, 9, 10, 12, 13]. The common
approach is to aggregate nodes from the local neighborhood into a target node’s representation and
subsequently compare the resulting representations with each other. More advanced approaches even
additionally aggregate nodes from the other graph into the node representations [12, 9]. Either way,
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the aggregation of information, i.e., the kind of information as well as the locality of the area from
which the information is aggregated, is the critical point to get useful embeddings. This holds for the
graph alignment task in particular, as information gathered from local node neighborhoods generally
tends to become less useful the more the two graphs that shall be aligned differ in terms of structural
properties. To overcome the issue of aggregating irrelevant or even misleading information, state-of-
the-art approaches use different types of attention mechanisms when aggregating node neighborhoods.
The general idea behind using attention is to determine the importance of a certain entity (e.g., a node
in the neighborhood) based on an object’s own representation (e.g., the representation of the target
node) and the current representation of the entity. The higher the importance, the more influence
should the corresponding entity have on the object’s own representation. However, the attention based
on the structure of the own graph is of limited usefulness for the graph alignment task. This problem
has recently been addressed, e.g., by additionally aggregating information from the whole counterpart
graph into the representation of each node [12]. We argue that the most important information about
a node’s neighbors is whether they have good alignments in the counterpart graph. Therefore, the
Graph Alignment Network (GrAN ) presented in this work uses an importance mechanism that, in
contrast to previous works, aims at putting special emphasis on nodes that have a good match in the
counterpart graph. By doing this, our model effectively introduces an additional inductive bias, i.e.,
the assumption that neighboring nodes which are likely to be part of the overlapping area of the two
graphs are particularly useful for a target node’s representation.

After presenting our GrAN model in Section 2, we present preliminary results of our evaluation
in Section 3. Precisely, we compare our model against state-of-the-art GNN approaches on map
fusion tasks. These tasks turned out to be particularly challenging due to presence of geo-spatial
coordinates as they form a natural and very strong baseline. However, it is noteworthy that our model
can also be applied to other tasks including knowledge graph matching and the determination of
graph similarities.

2 Graph Alignment Networks with Node Matching Scores
Let G = (V,E,X, P ) and G′ = (V ′, E′, X ′, P ′) denote two graphs with V , V ′ denoting the sets
of nodes, E, E′ being the sets of edges and X , X ′, and P , P ′ being the node and edge attributes,
respectively. For the sake of simplicity we assume that both graphs are undirected. Given this setup,
we aim at learning a function F : G×G′ → H ∈ R|V |×h which takes two graphs as input, applies
multiple message passing operations on them and finally retrieves latent vector representations for
the nodes of the first graph that was fed as input into F . For the GrAN model, we use a Siamese
architecture that allows to apply the same function F to both graphs such that the model’s final output
are two node embedding matrices H = F (G,G′) and H ′ = F (G′, G), respectively. Given the node
embeddings, we subsequently align two nodes if their vector representations are considered similar
with respect to some similarity function sim and a predefined similarity threshold τ , i.e.,

ŷ(vi, v
′
j) =

{
1 if sim(hi, hj) > τ
0 else.

, (1)

with vi ∈ V , v′j ∈ V ′, hi denoting the row vector from H that corresponds to the embedding of
node vi and hj being the row vector from H ′ that corresponds to the embedding vector of node v′j .
ŷ(vi, v

′
j) = 1 indicates that the nodes vi and v′j are aligned.

Graph Alignment Network. Graph Neural Networks [15, 16] compute node representations by
propagating information between vertices and aggregating them iteratively. In each layer, a message
is formed from each source node and passed to its neighbors. Incoming messages for each target node
are aggregated and flow into the target node’s output representation. Stacking multiple propagation
layers allows propagating information over multiple hops. Given a graph G = (V,E,X, P ) we
define a single message passing propagation step as follows:

mj→i = M l(hlj , pji), with pji ∈ P, (2)

M l(hlj , ej,i) = fmessage(h
l
j) + LSTM(pji), (3)

hl+1
i = [fnode(h

l
i),

∑
j,(j,i)∈E

αl
j→imj→i] (4)

where, l stands for the current layer, M is a message function, fnode and fmessage are small neural
networks and [·] denotes the concatenation operation. Also, note that for the Map Fusion task, the
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edge features pji ∈ P are sequences of coordinates that represent the road segment. Therefore, we
process edge features with a recurrent LSTM network and add the resulting vector to the transformed
node representations. However, the inclusion of edge features is generally optional. The weight
αl
j→i determines the importance of the message emitted by node j. In fact, the α weights realize

the additional inductive bias of our model, i.e., that the effect that a message has on other nodes
is determined by the maximal matching similarity of the source node to the other nodes in other
graph. Intuitively, assume that node v ∈ V has two neighbors u,w ∈ V with u being aligned to node
u′ ∈ V ′ while node w has no matching node in V ′. In this case, our goal is to put high emphasis on
u and low emphasis on w when aggregating incoming messages of v. The intuition is that a node
v′ ∈ V ′ who has u′ as a neighbor also receives highly weighted information from u′ which is assumed
to be similar to the information from u. Therefore, in each layer, our approach first determines the
best matching for each node with respect to the similarity function sim, and all outgoing messages
are weighted accordingly. More formally, we define the message weight αl

j→i as follows:

αl
j→i =

exp(I(hlj , H
′l))∑

ĵ exp(I(h
l
ĵ
, H ′l))

, with (ĵ, i) ∈ E, and (5)

I(hlj , H
′l) = max

k
sim′(fmatch(h

l
j), fmatch(h

′
k
l)), with h′k

l ∈ H ′l. (6)

Since it is not possible to backpropagate through the max operation, we apply the gumbel softmax
trick [17, 18]. For the functions fmessage, fnode and fmatch, we use Multilayer Perceptrons and
add an additional inductive bias by sharing parameters between these three functions. The inverse
Euclidean function is used as similarity function sim′(a, b) = 1

deuclidian(a,b)+1 .

Learning. We use the contrastive loss [19] with positive ε+ and negative ε− margins, i.e.,

L = yi,j ·max(0, d(hi, hj)− ε+) + (1− yi,j) ·max(0, ε− − d(hi, hj)), (7)

to train our model. yi,j is 1 for aligned and 0 for non-aligned pairs of nodes, and d is the Euclidean
distance. In contrast to, e.g., triplet loss, the contrastive loss allows us to incorporate nodes having no
matchings into the training.

3 Experiments
We evaluate our approach by interpreting the node matching problem as a binary classification task
and compare the proposed GrAN model against several state-of-the-art methods including GCN [20],
GAT [21], and GraphSAGE [22]. All GNN models use the same siamese architecture with shared
weights. For the competitors, as well as for our model we use implementations from the pytorch
geometric framework [23]. We also evaluate against a baseline method where we simply use the
geo-spatial coordinates of the used road networks’ vertices as 2-dimensional node representations for
the evaluation. Note, that this is a fairly strong baseline as the graph vertices lie within a continuous
space and two matching nodes obviously tend to have similar geo-spatial coordinates. Additionally,
where it is possible, we report the results when using probabilistic relaxation [14]. Note, that the
probabilistic relaxation method considers all assignments at once using hungarian algorithm [24] in
combination with Otsu’s [25] method, and therefore can benefit from the fact that graphs are different
in size. However, the complexity of O(c3), with c being the number of matching candidates, is rather
high and hence makes it impractical for larger networks. In contrast, all GNN models classify each
candidate pair independently. To achieve a fair comparison, we additionally report results when
conducting nearest neighbor queries on the set of nodes from the larger graph and query objects only
being taken from the smaller graph. This way we still need to find a threshold to divide the retrieved
candidates into nodes with and without matchings, but consider the fact that graphs differ in size.
Note that this approach ignores cases where nodes match to multiple nodes in counterpart graph.

We train each of the models by using two different road networks (one is from OSM1 and the other
from a commercial map provider), that both cover freeways of the Northrhine-Westphalia region
in Germany. In total, the networks consist of 15,442 vertices and 20,166 edges with 2956 of the
vertices having a matching node in the other network, i.e., they form matching pairs. In general,
nodes can have zero (1:0), one (1:1) or multiple (1:n) matching nodes in the other graph. Every node
represents an intersection and each edge corresponds to a road segment represented by the sequence

1https://www.openstreetmap.org
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of coordinates. To train the models, the matching pairs are split into training, validation and test set
(80-10-10). For the purpose of generating negative samples, we project each of the positive sample
vertices into the other road network and perform spatial range queries with a radius of approximately
1km2. The resulting set of vertices form the negative samples of the corresponding node (except for
the actual matching vertex). Additionally, we perform the same range queries for the nodes labeled
as 1:0 matchings and add the resulting pairs to the negative samples. Finally we get a set of 65,432
positive and negative candidate pairs, that form the final training, validation and test sets as reported
in Table 3 in supplementary material. Furthermore, we evaluate how well the models generalize
to yet unseen road networks by measuring their matching performance on a pair of road network
sections that are taken from the urban area of the city of Munich, Germany. Beside freeways, these
graphs also contain types of roads that are not present in the training data, e.g., residential street. The
dataset is referred to as MUC. For all models we trained various different architectures whose details
and hyperparameter settings can be found in the supplementary material. In the following, we report
the results for the architectures that showed the best performance.

Table 1: Resulting F1 Scores for the NRW and
MUC datasets.

Method NRW MUC
GrAN .676 .642

GCN .091 .009
GAT .091 .009
GraphSAGE .091 .009

Spatial Coordinates .681 .626
Probabilistic Relaxation .752 -

Table 2: Resulting F1 Scores for the NRW and
MUC datasets when using NN queries.

Method NRW MUC
GrAN .847 .704

GCN .048 .001
GAT .071 .005
GraphSAGE .064 .001

Spatial Coordinates .827 .661
Probabilistic Relaxation .752 -

Table 1 shows the F1 scores comparing the classification results of our approach against the results
produced by the other GNN based models and when using only spatial coordinates (SC), or the
probabilistic relaxation method. While our approach outperforms GCN, GAT and GraphSage, and
also the SC baseline on the MUC dataset, we achieve similar matching results as the baseline on the
NRW data. When comparing against probabilistic relaxation, the latter achieves better results on the
NRW dataset. However, considering the nearest neighbors evaluation (cf. Table 2), the probabilistic
relaxation approach is outperformed by both our approach and SC, although all methods except for
probabilistic relaxation ignore 1:n matchings. In summary, our method still achieves best results on
both datasets.

4 Conclusion

In this work we studied the problem of graph alignment. We presented our ongoing work on a
new Graph Neural Network based model, that aggregates information from neighbors based on
their alignment scores. We evaluated the proposed approach on Map Fusion tasks and compared it
with state-of-the-art models. Our promising experimental results show that the proposed approach
outperforms other GNN models by large margins. In future work we plan to adapt our model for
other tasks like the alignment of entities in heterogeneous graphs, and also for calculating graph
similarities. We further see the potential of improving the runtime of our algorithm by combining it
with graph coarsening methods for instance.
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5 Supplementary material

5.1 Dataset statistics

Table 3: Training and test dataset statistics.

NRW (train) NRW (test) MUC (test)

Nodes in G1 2,430 308 2,996
Nodes in G2 9,924 1,206 3,153
Candidates 52,138 6,148 378,948
1:1 & 1:n matchings 2,359 294 1,777
1:0 matchings 99 3 1,257

5.2 Architectures & Hyperparameter Settings

For all Graph Neural Network models we tried different architectures and hyperparameters:

Weight Sharing in Siamese Architecture We also tried to learn different encoders for each map
without weight sharing. This could help if two maps have different biases. However, it only
worsened the results.

Unsupervised Pretraining We used an adapted version of Deep Graph Infomax [26] for pretraining.
To corrupt a graph we shifted nodes randomly in coordinate space in each iteration. Model
pretraining led to the fastest convergence but did not affect a final result significantly.

Loss We experimented with different positive and negative margins. We obtained best results with
a positive margin of 0 and a negative margin of 10. To account for the class imbalance,
we decreased the weights for the negative examples inversely proportional to the relative
frequency.

Model Depth We tried 1 to 8 message passing layers, followed by 0 to 2 fully connected layers. For
GAT we additionally tried 1 to 7 attention heads in each layer. The number of attention
heads was constant for all layers.

Width We tested various layer sizes, with both constant and variable sizes of layers in the same
model.

Edge Attributes For the fair comparison we adapted the message function of all GNN models to
be able to consider edge attributes and we evaluated them with and without edge attributes.
We also trained models which consider edge attributes only in the first layer. Using the
Douglas–Peucker algorithm we reduced edge attribute sequence to different lengths. We
tried the sum and concatenation operations for combining edge and node embeddings in the
function M .

Early Stopping We trained all models with early stopping using a patience of 1000.
Message Aggregation To aggregate messages, we tried mean/max pooling and concatenation.
Normalization We normalized the input coordinates to [-1,1] range. Therefore, the data are first

zero-centered for each dimension. Next, each dimension is divided by the max distance
from the center in all dimensions. This normalization stabilizes training and inference while
preserving distance ratios.

Optimizer Settings All tested models were trained with the Adam SGD optimizer with learning
rate lr ∈ [1e-4, 1e-2), β1 = 0.9, β2 = 0.999, and the weight decay being chosen from the
interval [0, 1e-4)
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