
Graph Attacks with
Latent Variable Noise Modeling

Avishek Joey Bose ∗
McGill University, Mila

Andre Cianflone ∗
McGill University, Mila

William L. Hamilton ∗
McGill University, Mila

Abstract

Adversarial attacks on deep neural networks traditionally rely on a constrained
optimization paradigm, where an optimization procedure is used to obtain a sin-
gle adversarial perturbation for a given input example. In this work we frame
the problem as learning a distribution of adversarial perturbation, enabling us
to generate adversarial distributions given an unperturbed input. We apply this
adversarial approach to the graph domain in the whitebox attack setting, achieving
a new state-of-the-art. Finally, we demonstrate that our generative framework can
efficiently generate a diverse set of attacks for a single given input, and is even
capable of attacking unseen test instances in a zero-shot manner, exhibiting attack
generalization.

1 Introduction

Adversarial attacks on deep learning models involve adding small, often imperceptible, perturbations
to input data with the goal of forcing the model to make certain misclassifications [21]. There are a
wide-variety of settings and assumptions under which adversarial strategies are developed, including
the “whitebox” setting, where the model parameters are accessible to the attacker, and the more
challenging “blackbox” setting, where the attacker only has access to the inputs and outputs of the
target model [16, 17]. Despite this diversity, most existing approaches treat generating adversarial
attacks as a constrained optimization or search problem [3]. The objective is to search for a specific
adversarial perturbation based on a particular input datapoint, with the constraint that this perturbation
be small. This paradigm has led to a number of highly successful attack strategies, particularly in
the whitebox setting. Examples include the Fast Gradient Sign Method (FGSM) [7], L-BFGS [21],
Jacobian-based Saliency Map Attack (JSMA) [18], DeepFool [15], Carlini-Wagner [3] and the PGD
attack [14], to name a few.

However, this paradigm has important limitations. For example, while these attack strategies are
easily applicable to continuous input domains (i.e., images), adapting them to new modalities, such as
discrete textual data [12, 5, 6] or graph-structured data that is non-i.i.d. [4, 25], represents a significant
challenge [23, 20]. In addition, a specific optimization must be performed for each attacked input,
which generally only leads to a single or small set of non-diverse perturbations, which can make them
easier to defend against. These approaches do not efficiently generalize to unseen examples, since
they require a new round of optimization to be performed for each attacked input.

We propose GALVN (Graph-Attacks with Latent Variable Noise modeling); a generative framework
for whitebox adversarial attacks on the graph domain. Our approach offers the following key benefits:
(1) Efficient generalization. With our stochastic latent variable model we can efficiently construct
adversarial examples and even generalize without any further optimization to unseen test examples.
(2) Diverse attacks. We learn a diverse conditional distribution of adversarial examples, allowing us

∗Correspondence to Authors: {joey.bose@mail,andre.cianflone@mail,wlh@cs}.mcgill.ca

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

to resample after a failed attack. Our approach achieves a new state-of-the-art for attacking a Graph
Neural Network using node features alone.

2 Background and Preliminaries

Given a classifier f : X → Y , input datapoint x ∈ X , and class label y ∈ Y , where f(x) = y, the
goal of an adversarial attack is to produce a perturbed datapoint x′ ∈ X such that f(x′) = y′ 6= y,
and where the distance ∆(x, x′) between the original and perturbed points is sufficiently small.

Threat models. Adversarial attacks can be classified under different threat models, which impose
different access and resource restrictions on the attacker [1]. In this work we consider the whitebox
setting, where the attacker has full access to the model parameters and outputs. This setting is
more permissive than the blackbox [16, 17] and semi-whitebox [24] settings, which we consider for
test set attacks. Constrained optimization attacks in the whitebox setting are relatively mature and
well-understood, making it a natural setting to contrast our alternative generative modelling-based
attack strategy. In addition, we consider the more common setting of untargeted attacks, where the
goal of the attacker is to change the original classification decision to any other class.2

Constrained optimization approach. In the standard constrained optimization framework, the goal
is to find some minimal perturbation δ ∈ X that minimizes ∆(x, x+δ), subject to f(x+δ) = y′ and
x+ δ ∈ X , where the last constraint is added to ensure that the resulting x′ = x+ δ is still a valid
input (e.g., a valid image in normalized pixel space.) Rather than solving this non-convex optimization
problem directly, the typical approach is to relax the constraints into the objective function and to
employ standard gradient descent [7] or projected gradient descent, with the projection operator
restricting x′ such that ∆(x, x′) ≤ ε and x′ ∈ X [14].

Limitations of the constrained optimization approach. The constrained optimization formulation
has been effectively deployed in many recent works, especially for images (see [1] for a survey).
However, this approach has two key technical limitations: (1) Directly searching for an adversarial
example x′ or an adversarial perturbation δ ∈ X can be computationally expensive if the input space
X is very high-dimensional or discrete (e.g., for graphs). Moreover, adding the perturbation δ to
x is only feasible if the input domain X is a field with a well-defined notion of addition, which is
not the case for discrete domains such as graphs. (2) A distinct optimization procedure must be
run separately for each attacked datapoint, generally yielding a single (or small set) of non-diverse
perturbations per attacked datapoint. Together, these limitations make it non-trivial to generalize
the constrained optimization approach beyond the image domain, and make it difficult to generate
diverse attacks for unseen datapoints.

3 Proposed Approach

To address these limitations, we propose adversarial attacks in the latent variable modeling framework.
Instead of searching over the original input space X to generate an adversarial example, we learn to
generate perturbations within a low-dimensional, continuous latent space Rd. We define an adversarial
generator network, G, which specifies a conditional distribution P (x′|x) over adversarial examples
x′ given an input datapoint x. The model is defined as a combination of four components (Figure 2):
(1) A probabilistic encoder network, qφ(z|x) that defines a conditional distribution over latent codes
z ∈ Rd given an input xi ∈ X . The latent conditional distribution as z ∼ N (µφ(x), σφ(x)), where
µφ, σφ : X → Rd are differentiable neural networks. (2) A probabilistic decoder network, pθ(δ|z)
that maps a sampled latent code z ∈ Rd to a perturbation δ. (3) A combination function c(δ, x) that
combines δ and x to output a perturbed example x′. (4) A similarity function ∆ defined over X , used
to restrict the space of adversarial examples.

Adversarial generalization. Instead of performing a specific optimization for each attacked example,
we can generate a distribution of adversarial examples on arbitrary input points, even points that were
unseen during training. In Section 4.1, we demonstrate how resampling significantly improves attack
generalization on a test set.

2Our framework could be extended to the targeted setting by modifying the loss function, as well as to
blackbox attacks via blackbox gradient estimation [22, 8], but we leave these extensions to future work.

2

3.1 Training and loss function

Misclassification loss. We use a max-margin misclassification loss, since it has been shown to be
robust to hyperparameter settings [3]. Using s(x, y) ∈ R to denote the (unnormalized) relative
likelihood that the classifier f assigns to point x ∈ X belonging to class y ∈ Y , we define the
classification loss as:

Lc =
1

N

N∑
i

max(s(x′i, yi)− (s(x′i, y
′
i))maxy′

i
6=yi
, 0),

where yi is the correct class for the unperturbed point xi.

Regularization. We penalize the model according to the similarity ∆(x, x′) between the perturbed
and unperturbed points. To avoid code collapse, the latent code is KL-regularized with a uniform
Gaussian.

Overall objective and training. The overall objective is thus defined as follows:

L = Lc +
1

N

N∑
i

(−λ ·∆(xi, x
′
i) +DKL(qφ(z|xi) || N (0, 1)). (1)

Objective (1) is minimized end-to-end with stochastic gradient descent. While the generative model
resembles a variational auto-encoder (VAE) [10], our objective function is an adversarial loss in
constrast to the usual cross-entropy objective. Moreoever, the reconstruction error in Equation (1) is
given by an arbitrary similarity function ∆, with a hyperparameter λ that trades-off the adversarial
misclassification objective from the magnitude of the perturbation by maximizing the similarity.

3.2 Implementation

We consider the challenging attack setting where the attack model can only make changes to node
attributes and not the graph structure itself [25]—employing a graph convolution network (GCN)
[11] as the encoder network and a multi-layer perceptron (MLP) as the decoder. Note, however,
that adversarial attacks on graphs present unique complications compared to texts and images in
that the training data is non-i.i.d., with the training points being a sub-sample of the nodes in a
large graph. Thus, following Zugner et al. [25], we consider both direct attacks, which modify the
features of the target nodes themselves as well as influencer attacks, which can only modify features
in the neighborhood of a target node but not the node itself. Consequently, we define two sets of
disjoint nodes: the attacker set A, and the target set T . For direct attacks A = T and in this case the
combination function is simply c(δ, x) = x+ δ. For influencer attacks, only the embeddings of the
A are modified and thus we use a binary mask in our combination function —i.e. c(δ, x) = x+ b · δ,
where b ∈ [0, 1]N . We use the l2 norm as the similarity function.

4 Experiments

We investigate the application of our generative framework to produce adversarial examples against
two standard node classification datasets: Cora and CiteSeer [13, 2, 19]. As points of comparison
throughout our experiments, we consider NetAttack approach [25]—a powerful baseline that relies
on a constrained optimization based approach to generate adversarial examples. We also experiment
with a simplified version of GALVN that uses a deterministic autoencoder, rather than a variational
approach (denoted GALVN-AE). We split the dataset into labeled 20% of which 10% is used for
training and the remaining is used for validation. The remaining nodes are unlabeled nodes and are
used for testing purposes. We attack a single-layer graph convolutional network (GCN) model [11]
that is trained for 100 epochs with the Adam optimizer and a learning rate of 1e − 2. Following
previous work, we consider both direct and influencer attacks (as discussed in Section 3.2); in the
influencer setting we attack a node by changing the features of a random sample of 5 of its neighbors.3

3If there are fewer than 5 neighbors we randomly sample nodes from A until we have a total of 5

3

Figure 1: Attack Success Rate when resampling
only failed adversarial examples in the test set.

Cora CiteSeer

Train Test Train Test

GD 88 % 91 % 81% 82%
GAED 100% 93% 100% 92%
ZD 99% - 99% -

DI 62% - 54 % -
GAEI [25] 60% - 52% -
ZI [25] 33 % - 38% -

Table 1: Attack success rate on Graph Data. (GD)
GALVN-Direct, (GAED) GALVN-AE-Direct,
(ZD) Zugner-Direct, (DI) GALVN-Influencer,
(GAEI) GALVN-AE-Influencer, (ZI) Zugner-
Influencer. We used λ = 0.01 and results are
averaged over 5 runs.

4.1 Results

Attack Strength. We find that GALVN achieves very strong results (Table 1) and our GALVN-AE
baseline achieves a new state-of-the-art for direct attacks (when modifying node features only),
outperforming the constrained optimization NetAttack approach [25] and achieving a perfect success
rate on the training set (Table 1). Both GALVN-AE and GALVN also significantly outperform
NetAttack in the influencer attack setting, with the latter seeing an absolute improvement of 29%
and 16% on Cora and CiteSeer, respectively. Note that we do not compare against the graph attack
framework of Dai et al. [4], since that work modifies the adjacency matrix of the graph, whereas we
modify node features only.

Attack Generalization. We demonstrate the ability of GALVN to attack a test set of previously
unseen instances, with results summarized under the Test columns in Tables 1. Since constrained
optimization-based attack strategies cannot generalize to a test set of examples, we rely on our
GALVN-AE approach as a strong baseline. We observe that GALVN has marginally better general-
ization ability for influencer attacks while GALVN-AE performs better by a similar margin in the
easier direct attack setting.

Diversity of Attacks. GALVN exhibits comparable (or marginally worse) performance compared
to our deterministic autoencoder (GALVN-AE) approach in terms of raw success rates. However,
a key benefit of the full GALVN framework is that it has a stochastic latent state, which allows
for resampling of latent codes to produce new adversarial examples. We empirically verify this
phenomena by resampling failed test set examples up to a maximum of 100 resamples. As can be
seen from Figure 1, GALVN can produce adversarial samples for clean inputs that were originally
classified correctly, significantly boosting generalization performance. We resample test set instances
for direct attacks and failed training set instances for influencer attacks but still without any further
optimization. We achieve significant improvements of 36% and 61% for Cora and CiteSeer direct
attacks, respectively, and 47% and 8% for Cora and CiteSeer influencer attacks, respectively.

5 Discussion and Conclusion

We present GALVN, a framework for constructing adversarial attacks on the graph domain. We
successfully show that our trained model is capable of generating adversarial examples on unseen
test examples in a new form of attack generalization. Further, we show that the generative nature
of GALVN makes it capable of generating diverse sets of attacks for any given input, allowing
the attacker to cheaply resample failed attacks in an another attempt to be adversarial. Future
work will focus on extending GALVN to flexible posterior distributions, such as normalizing flows.
Additionally, further studies are necessary to demonstrate how training a target model on these attacks
increases its robustness

4

Acknowledgements

The authors would like to thank Maxime Wabartha, Ariella Smofsky, Lucas Caccia, Nadeem Ward,
Yanshuai Cao, and Gavin Ding for helpful feedback on earlier drafts of this work. Andre Cianflone
is supported by the Borealis AI fellowship, and acknowledges the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC), [funding reference number 411304954].
This research was funded in part by an academic grant from Microsoft Research, as well as a Canada
CIFAR Chair in AI, held by Prof. Hamilton.

5

References
[1] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer

vision: A survey. IEEE Access, 6:14410–14430, 2018.

[2] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational data. ACM
Transactions on Knowledge Discovery from Data (TKDD), 1(1):5, 2007.

[3] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
Security and Privacy (SP), 2017 IEEE Symposium on, pages 39–57. IEEE, 2017.

[4] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data. arXiv preprint arXiv:1806.02371, 2018.

[5] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial
examples for text classification. arXiv preprint arXiv:1712.06751, 2017.

[6] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops
(SPW), pages 50–56. IEEE, 2018.

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[8] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. In International
Conference on Learning Representations (ICLR), 2018.

[9] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations (ICLR), 2014.

[11] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[12] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint arXiv:1812.05271, 2018.

[13] Qing Lu and Lise Getoor. Link-based classification. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 496–503, 2003.

[14] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[15] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2574–2582, 2016.

[16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016.

[17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, pages 506–519. ACM,
2017.

[18] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In Security and
Privacy (EuroS&P), 2016 IEEE European Symposium on, pages 372–387. IEEE, 2016.

6

[19] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[20] Lichao Sun, Ji Wang, Philip S Yu, and Bo Li. Adversarial attack and defense on graph data: A
survey. arXiv preprint arXiv:1812.10528, 2018.

[21] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[22] George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein.
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models. In
Advances in Neural Information Processing Systems, pages 2627–2636, 2017.

[23] Wenqi Wang, Benxiao Tang, Run Wang, Lina Wang, and Aoshuang Ye. A survey on adversarial
attacks and defenses in text. CoRR, abs/1902.07285, 2019.

[24] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating
adversarial examples with adversarial networks. arXiv preprint arXiv:1801.02610, 2018.

[25] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2847–2856. ACM, 2018.

7

A Implementation Details

In general we found it useful to spend multiple computation cycles on a particular batch before
moving on to the next batch. We used an upper limit of 40 gradient computations per batch or untill
all examples in the batch were misclassified and the δ was lower than some threshold. To tune our
hyperparameters we used the same train/validation splits that were used to train the target classifier.

ATTACK DOMAIN INPUT TYPE ENCODER DECODER δ ∆ c(x, δ)

GRAPH-DIRECT NODE EMB GCN MLP NODE EMB l2 x+ δ
GRAPH-INFLUENCER NODE EMB GCN MLP NODE EMB l2 x+ b · δ

Table 2: Summary of the different components to applying our framework

Hyperparameters. We now detail exact configuration of hyperparameter settings used in all of our
experiments.

Parameter Description Value

Generator Architecture GCN Encoder and MLP Decoder -
GCN hidden size Number of features for 1-layer GCN 16
Attack Epochs Number of Epochs for GALVNtraining 200
Latent size AE and GALVN latent posterior size 50
Dropout Ratio Used for Regularization 0.5
|T | Number of Target Nodes 40
Learning rate Learning rate for G 0.01
Optimizer GALVN optimizer Adam [9]
λ L2 regularization coefficient 0.01
Batch size For training and testing 256
GPU For training and testing 1 Nvidia 1080 Ti
Similarity function Metric used for ∆ l2-distance

Table 3: Hyperparameter and experimental details for the Graph domain

Figure 2: The main components of GALVN and the forward generation of an adversarial example.

8

	Introduction
	Background and Preliminaries
	Proposed Approach
	Training and loss function
	Implementation

	Experiments
	Results

	Discussion and Conclusion
	Implementation Details

