
Diachronic Embedding for Temporal Knowledge
Graph Completion

Rishab Goel∗, Seyed Mehran Kazemi∗, Marcus Brubaker, Pascal Poupart
Borealis AI

{rishab.goel,mehran.kazemi,marcus.brubaker,pascal.poupart}@borealisai.com

Abstract

Knowledge graph (KG) embedding approaches have proved effective for KG
completion, however, they have been developed mostly for static KGs. Developing
temporal KG embedding models is an increasingly important problem. In this paper,
we build novel models for temporal KG completion through equipping static models
with a diachronic entity embedding function which provides the characteristics
of entities at any point in time. This is in contrast to the existing temporal KG
embedding approaches where only static entity features are provided. The proposed
embedding function is model-agnostic and can be potentially combined with any
static model. We prove that combining it with SimplE results in a fully expressive
model for temporal KG completion. Our experiments indicate the superiority of
our proposal compared to existing baselines.

1 Introduction

Knowledge graphs (KGs) are directed graphs where nodes represent entities and (labeled) edges
represent relationships among entities. Each edge in a KG corresponds to a fact and can be represented
as a tuple such as (Mary, Liked,God Father) where Mary and God Father are called the head and
tail entities respectively and Liked is a relation. KG completion, inferring new facts based on the
existing ones, has been extensively studied for static KGs (see [15, 18, 14] for a summary). KG
embedding approaches have offered remarkable results for KG completion on several benchmarks.

KG edges are typically associated with a timestamp or time interval; however, KG embedding
approaches have been mostly designed for static KGs ignoring the temporal aspect. Recent work has
shown a substantial boost in performance by extending these approaches to utilize time [6, 3, 13, 4].
The proposed extensions are mainly through computing a hidden representation for each timestamp
and extending the score functions to utilize timestamp representations as well.

In this paper, we develop models for temporal KG completion (TKGC) based on an intuitive assump-
tion: to provide a score for, e.g., (Mary, Liked,God Father, 1995), one needs to know Mary’s and
God Father’s features on 1995; providing a score based on their current features may be misleading.
That is because Mary’s personality and the sentiment towards God Father may have been quite
different on 1995 as compared to now. Consequently, learning a static representation for each entity –
as is done by existing approaches – may be sub-optimal as such a representation only captures the
entity features at the current time, or an aggregation of entity features during time.

To provide entity features at any given time, we define entity embedding as a function which takes
an entity and a timestamp as input and provides a hidden representation for the entity at that time.
Inspired by diachronic word embeddings, we call our proposed embedding diachronic embedding
(DE). We show the merit of our model on subsets of ICEWS [2] and GDELT [11] datasets.

∗Equal contribution.

2 Background and Notation

Notation: Lower-case letters denote scalars, bold lower-case letters denote vectors, and bold upper-
case letters denote matrices. zzz[n] represents the nth element of a vector zzz. For k vectors zzz1, . . . , zzzk ∈
Rd, 〈zzz1, . . . , zzzk〉 =

∑d
n=1(zzz1[n] ∗ · · · ∗ zzzk[n]) represents the sum of the element-wise product of the

elements of the k vectors.

Temporal Knowledge Graph (Completion): Let V be a finite set of entities, R be a finite set of
relation types, and T be a finite set of timestamps. LetW ⊂ V ×R× V × T represent the set of all
temporal tuples (v, r, u, t) that are facts (i.e. true in a world), where v, u ∈ V , r ∈ R, and t ∈ T . Let
Wc be the complement ofW . A temporal knowledge graph (KG) G is a subset ofW (i.e. G ⊂ W).
Temporal KG completion (TKGC) is the problem of inferringW from G.

KG Embedding: Formally, we define an entity embedding as follows.
Definition 1. An entity embedding, EEMB : V → ψ, is a function which maps every entity v ∈ V to a
hidden representation in ψ where ψ is the class of non-empty tuples of vectors and/or matrices.

A relation embedding (REMB : R → ψ) is defined similarly. We refer to the hidden representation of
an entity (relation) as the embedding of the entity (relation). A KG embedding model defines two
things: 1- the EEMB and REMB functions, 2- a score function which takes EEMB and REMB as input and
provides a score for a given tuple. The parameters of hidden representations are learned from data.

3 Diachronic Embedding

We propose an alternative entity embedding function definition which, besides entity, takes time
as input as well. Inspired by diachronic word embeddings, we call such an embedding function a
diachronic entity embedding. Below is a formal definition:
Definition 2. A diachronic entity embedding, DEEMB : (V, T)→ ψ, is a function which maps every
pair (v, t), where v ∈ V and t ∈ T , to a hidden representation in ψ.

One may take their favorite static KG embedding score function and make it temporal by replacing
their entity embeddings with diachronic entity embeddings. The choice of the DEEMB function can be
different for various temporal KGs depending on their properties. Here, we propose a DEEMB function
which performs well on our benchmarks. We give the definition for models where the output of the
DEEMB function is a tuple of vectors but it can be generalized to other cases as well. Let zzztv ∈ Rd be a
vector in DEEMB(v, t) (i.e. DEEMB(v, t) = (. . . , zzztv, . . .)). We define zzztv as follows:

zzztv[n] =

{
aaav[n]σ(wwwv[n]t+ bbbv[n]), if 1 ≤ n ≤ γd.
aaav[n], if γd < n ≤ d. (1)

where aaav ∈ Rd and wwwv, bbbv ∈ Rγd are (entity-specific) vectors with learnable parameters and σ is
an activation function. Intuitively, entities may have some features that change over time and some
features that remain fixed. The first γd vector elements vector in Equation (1) capture temporal
features and the other (1 − γ)d elements capture static features. 0 ≤ γ ≤ 1 is a hyper-parameter
controlling the percentage of temporal features. While static features can be obtained from the
temporal ones if the optimizer sets some elements ofwwwv to zero, explicitly modeling static features
helps reduce the number of parameters and avoid overfitting to temporal signals (see Section 4.1).

Intuitively, by learningwwwvs and bbbvs, the model learns how to turn entity features on and off at different
points in time so accurate temporal predictions can be made about them at any time. aaavs control the
importance of the features. We mainly use sine activations because one sine can model several on
and off states. Our experiments explore other activation functions as well and provide more intuition.

Model-Agnosticism: One may construct temporal versions of TransE, DistMult, SimplE, or other
models by replacing their EEMB function with DEEMB in Equation 1. We refer to the resulting models
as DE-TransE, DE-DistMult, DE-SimplE and so forth, where DE is short for Diachronic Embedding.

Learning: The facts in a KG G are split into train, validation, and test sets. Model parameters
are learned using stochastic gradient descent with mini-batches. Let B ⊂ train be a mini-batch.
For each fact f = (v, r, u, t) ∈ B, we generate two queries: 1- (v, r, ?, t) and 2- (?, r, u, t). For the
first query, we generate a candidate answer set Cf,v which contains v and n (hereafter referred to as

2

Table 1: Results on ICEWS14, ICEWS05-15, and GDELT. Best results are in bold.

ICEWS14 ICEWS05-15 GDELT

Model MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
TransE [1] 0.280 9.4 - 63.7 0.294 9.0 - 66.3 0.113 0.0 15.8 31.2

DistMult [19] 0.439 32.3 - 67.2 0.456 33.7 - 69.1 0.196 11.7 20.8 34.8
SimplE [8] 0.458 34.1 51.6 68.7 0.478 35.9 53.9 70.8 0.206 12.4 22.0 36.6
ConT [12] 0.185 11.7 20.5 31.5 0.163 10.5 18.9 27.2 0.144 8.0 15.6 26.5

TTransE [6] 0.255 7.4 - 60.1 0.271 8.4 - 61.6 0.115 0.0 16.0 31.8
HyTE [3] 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1 0.118 0.0 16.5 32.6

TA-DistMult [4] 0.477 36.3 - 68.6 0.474 34.6 - 72.8 0.206 12.4 21.9 36.5
DE-TransE 0.326 12.4 46.7 68.6 0.314 10.8 45.3 68.5 0.126 0.0 18.1 35.0

DE-DistMult 0.501 39.2 56.9 70.8 0.484 36.6 54.6 71.8 0.213 13.0 22.8 37.6
DE-SimplE 0.526 41.8 59.2 72.5 0.513 39.2 57.8 74.8 0.230 14.1 24.8 40.3

negative ratio) other entities selected randomly from V . For the second query, we generate a similar
candidate answer set Cf,u. Then we minimize the cross entropy loss which has been used and shown
good results for both static and temporal KG completion (see, e.g., [7, 4]):

L = −
(∑
f=(v,r,u,t)∈B

exp(φ(v, r, u, t))∑
u′∈Cf,u

exp(φ(v, r, u′, t))
+

exp(φ(v, r, u, t))∑
v′∈Cf,v

exp(φ(v′, r, u, t))

)
Expressivity: We prove the full expressivity of DE-SimplE.
Definition 3. A model with parameters θ is fully expressive if given any world with true tuplesW
and false tuplesWc, there exists an assignment for θ that correctly classifies the tuples inW andWc.
Theorem 1 (Expressivity). DE-SimplE is fully expressive for temporal knowledge graph completion.

4 Experiments & Results

Datasets: Our datasets are subsets of ICEWS [2] and GDELT [11]. For ICEWS, we use the two
subsets generated by García-Durán et al. [4]: 1- ICEWS14 corresponding to the facts in 2014 and
2- ICEWS05-15 corresponding to the facts between 2005 to 2015. For GDELT, we use the subset
extracted by Trivedi et al. [17] corresponding to 3,419,607 facts from April 1, 2015 to March 31,
2016. We changed the train/validation/test sets following a similar procedure as in [1] to make the
problem into a TKGC rather than an extrapolation problem.

Metrics: We report the filtered versions of mean reciprocal rank (MRR) and Hit@k for k = 1, 3, 10.

Comparative Study: We compare the existing baselines with three variants of our model: 1-
DE-TransE, 2- DE-DistMult, and 3- DE-SimplE. The obtained results are in Table 1. DE-TransE
outperforms the other TransE-based baselines (TTransE and HyTE) on ICEWS14 and GDELT and
gives on-par results with HyTE on ICEWS05-15. This result shows the superiority of our diachronic
embeddings compared to TTransE and HyTE. DE-DistMult outperforms TA-DistMult, the only
DistMult-based baseline, showing the superiority of our diachronic embedding compared to TA-
DistMult. Moreover, DE-DistMult outperforms all TransE-based baselines. Finally, just as SimplE
beats TransE and DistMult due to its higher expressivity, our results show that DE-SimplE beats
DE-TransE, DE-DistMult, and the other baselines due to its higher expressivity.

4.1 Model Variants & Ablation Study

Activation Function: So far, we used sine as the activation function in Equation 1. The performance
for other activation functions are presented in Table 2. The results show that other activation functions
also perform well. Specifically, squared exponential performs almost on-par with sine. We believe
one reason why sine and squared exponential give better performance is because a combination of
sine or square exponential features can generate more sophisticated features than a combination of
Tanh, sigmoid, or ReLU features. While a temporal feature with Tanh or sigmoid as the activation
corresponds to a smooth off-on (or on-off) temporal switch, a temporal feature with sine or squared
exponential activation corresponds to two (or more) switches (e.g., off-on-off) which can potentially
model relations that start at some time and end after a while (e.g., PresidentOf). These results also
provide evidence for the effectiveness of diachronic embedding across several DEEMB functions.

3

Table 2: Results for different variations of our model on ICEWS14.
Model Variation MRR Hit@1 Hit@3 Hit@10

DE-DistMult No variation (Activation function: Sine) 0.501 39.2 56.9 70.8
DE-DistMult Activation function: Tanh 0.486 37.5 54.7 70.1
DE-DistMult Activation function: Sigmoid 0.484 37.0 54.6 70.6
DE-DistMult Activation function: Leaky ReLU 0.478 36.3 54.2 70.1
DE-DistMult Activation function: Squared Exponential 0.501 39.0 56.8 70.9
DE-DistMult Diachronic embedding for both entities and relations 0.502 39.4 56.6 70.4
DE-DistMult aaav[n] = 1 for 1 ≤ n ≤ γd for all v ∈ V 0.458 34.4 51.8 68.3
DE-DistMult wwwv[n] = 1 for 1 ≤ n ≤ γd for all v ∈ V 0.470 36.4 53.1 67.1
DE-DistMult bbbv[n] = 0 for 1 ≤ n ≤ γd for all v ∈ V 0.498 38.9 56.2 70.4

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Temporal Features

0.46

0.48

0.50

0.52

Te
st

 M
RR

(a)

0 100 200 300 400 500
Training epoch

200

400

600

800

Lo
ss

DistMult
DE-DistMult

(b)

Figure 1: (a) Test MRR of DE-SimplE on ICEWS14 as a function of γ. (b) The training curve for
DistMult and DE-DistMult.

Adding Diachronic Embedding for Relations: Compared to entities, we hypothesize that relations
may evolve at a very lower rate or, for some relations, evolve only negligibly. Therefore, modeling
relations with a static representation may suffice. To test this hypothesis, we ran DE-DistMult on
ICEWS14 where relation embeddings are also a function of time. From the obtained results in Table 2,
one can see that the model with diachronic embeddings for both entities and relations performs on-par
with the model with diachronic embedding only for entities. We conducted the same experiment on
ICEWS05-15 (which has a longer time horizons) and GDELT and observed similar results. These
results show that at least on our benchmarks, modeling the evolution of relations may not be helpful.
Future work can test this hypothesis on datasets with other types of relations and longer horizons.

Importance of Model Parameters Used in Equation 1: In Equation 1, the temporal part of the
embedding contains three components: aaav,wwwv, and bbbv. To measure the importance of each component,
we ran DE-DistMult on ICEWS14 under three settings: 1- when aaavs are removed (i.e. set to 1), 2-
whenwwwvs are removed (i.e. set to 1), and 3- when bbbvs are removed (i.e. set to 0). According to the
results in Table 2, all three components are important, especially aaavs andwwwvs. Removing bbbvs does not
affect the results as much as aaavs andwwwvs. Therefore, if one needs to reduce the number of parameters,
removing bbbv may be a good option as long as they can tolerate a slight reduction in accuracy.

Static Features: Figure 1(a) shows the test MRR of DE-SimplE on ICEWS14 as a function of γ, the
percentage of temporal features. As soon as some features become temporal, a substantial boost in
performance can be observed. As γ becomes larger, MRR reaches a peak and then slightly drops.
This slight drop in performance can be due to overfitting to temporal cues. This result demonstrates
that modeling static features explicitly can help reduce the number of learnable parameters and avoid
overfitting. Such a design choice may be even more important when the embedding dimensions are
larger. However, it comes at the cost of adding one hyper-parameter to the model.

Training Curve: While it has been argued that using sine activation functions may complicate
training in some neural network architectures (see, e.g., [10, 5]), it can be in viewed Figure 1(b) that
when using sine activations, the training curve for our model is quite stable.

5 Conclusion

We developed a diachronic embedding for temporal KG completion which provides a hidden represen-
tation for the entities of a temporal KG at any point in time. Future work includes designing functions
other than the one proposed in Equation 1, a comprehensive study of which functions are favored by
different types of KGs, and using our proposed embedding for diachronic word embedding.

4

References
[1] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.

Translating embeddings for modeling multi-relational data. In NeurIPS, pages 2787–2795, 2013.

[2] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James Starz, and
Michael Ward. Icews coded event data. Harvard Dataverse, 12, 2015.

[3] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In EMNLP, pages 2001–2011, 2018.

[4] Alberto García-Durán, Sebastijan Dumančić, and Mathias Niepert. Learning sequence encoders
for temporal knowledge graph completion. In EMNLP, 2018.

[5] Tuomas Virtanen Giambattista Parascandolo, Heikki Huttunen. Taming the waves: sine as
activation function in deep neural networks. 2017.

[6] Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao Chang, Sujian Li, and Zhifang Sui.
Towards time-aware knowledge graph completion. In COLING, pages 1715–1724, 2016.

[7] Ondrej Bajgar Kadlec, Rudolf and Jan Kleindienst. Knowledge base completion: Baselines strike
back. arXiv preprint arXiv:1705.10744, 2017.

[8] Seyed Mehran Kazemi and David Poole. SimplE embedding for link prediction in knowledge
graphs. In NeurIPS, 2018.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] Alan Lapedes and Robert Farber. Nonlinear signal processing using neural networks: Prediction
and system modelling. Technical report, 1987.

[11] Kalev Leetaru and Philip A Schrodt. Gdelt: Global data on events, location, and tone, 1979–
2012. In ISA annual convention, volume 2, pages 1–49. Citeseer, 2013.

[12] Yao Ma, Ziyi Guo, Zhaochun Ren, Eric Zhao, Jiliang Tang, and Dawei Yin. Streaming graph
neural networks. arXiv preprint arXiv:1810.10627, 2018.

[13] Yunpu Ma, Volker Tresp, and Erik A Daxberger. Embedding models for episodic knowledge
graphs. Journal of Web Semantics, 2018.

[14] Dat Quoc Nguyen. An overview of embedding models of entities and relationships for knowl-
edge base completion. arXiv preprint arXiv:1703.08098, 2017.

[15] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of
relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016.

[16] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[17] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs. In ICML, pages 3462–3471, 2017.

[18] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey
of approaches and applications. IEEE TKDE, 29(12):2724–2743, 2017.

[19] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. ICLR, 2015.

5

A Experiments & Results

Datasets: A summary of dataset statistics can be found in Table 3.

Metrics: For each fact f = (v, r, u, t) ∈ test, we create two queries: 1- (v, r, ?, t) and 2- (?, r, u, t).
For the first query, the model ranks all entities in u∪Cf,u where Cf,u = {u′ : u′ ∈ V, (v, r, u′, t) 6∈ G}.
This corresponds to the filtered setting commonly used in the literature [1]. We follow a similar
approach for the second query. Let kf,u and kf,v represent the ranking for u and v for the two queries
respectively. We report mean reciprocal rank (MRR) defined as 1

2∗|test|
∑
f=(v,r,u,t)∈test(

1
kf,u

+ 1
kf,v

).
Compared to its counterpart mean rank which is largely influenced by a single bad prediction, MRR
is more stable [15]. We also report Hit@1, Hit@3 and Hit@10 measures where Hit@k is defined as

1
2∗|test|

∑
f=(v,r,u,t)∈test(1kf,u≤k + 1kf,v≤k), where 1cond is 1 if cond holds and 0 otherwise.

Implementation: We implemented our model and the baselines in PyTorch [16]. We ran our
experiments on a node with four GPUs. For the two ICEWS datasets, we report the results for some
of the baselines from [4]. For the other experiments on these datasets, for the fairness of results, we
follow a similar experimental setup as in [4] by using the ADAM optimizer [9] and setting learning
rate = 0.001, batch size = 512, negative ratio = 500, embedding size = 100, and validating every 20
epochs selecting the model giving the best validation MRR. Following the best results obtained in [13]
(and considering the memory restrictions), for ConT we set embedding size = 40, batch size = 32 on
ICEWS14 and GDELT and 16 on ICEWS05-15. We validated dropout values from {0.0, 0.2, 0.4}.
We tuned γ for our model from the values {16, 32, 64}. For GDELT, we used a similar setting but
with a negative ratio = 5 due to the large size of the dataset. Unless stated otherwise, we use sine as
the activation function for Equation (1). Since the timestamps in our datasets are dates rather than
single numbers, we apply the temporal part of Equation (1) to year, month, and day separately (with
different parameters) thus obtaining three temporal vectors. Then we take an element-wise sum of
the resulting vectors obtaining a single temporal vector. Intuitively, this can be viewed as converting
a date into a timestamp in the embedded space.

B Proof of Theorem

Theorem 1. DE-SimplE is fully expressive for temporal knowledge graph completion.

Proof. For every entity vi ∈ V , let DEEMB(vi, t) = (~zzztvi , ~zzztvi) where, according to Equation (1) with
sine activations, ~zzz t

vi ∈ Rd and ~zzz t
vi ∈ Rd are defined as follows:

~zzz t
vi [n] =

{
~aaavi [n] sin(~wwwvi [n]t+

~bbbvi [n]), if n ≤ γ.
~aaavi [n], if n > γ.

(2)

and:

~zzz t
vi [n] =

{
~aaavi [n] sin(~wwwvi [n]t+

~bbbvi [n]), if n ≤ γ.
~aaavi [n], if n > γ.

(3)

We provide the proof for a specific case of DE-SimplE where the elements of ~zzz t
v s are all temporal and

the elements of ~zzz t
vs are all non-temporal. This specific case can be achieved by setting γ = d, and

~wwwv[n] = 0 and ~bbbv[n] =
π
2 for all v ∈ V and for all 1 ≤ n ≤ d. If this specific case of DE-SimplE is

fully expressive, so is DE-SimplE. In this specific case, ~zzztvi and ~zzztvi for every vi ∈ V can be re-written
as follows:

~zzz t
vi [n] = ~aaavi [n] sin(~wwwvi [n]t+

~bbbvi [n]) (4)

~zzz t
vi [n] = ~aaavi [n] (5)

For every relation rj ∈ R, let REMB(r) = (~zzzrj , ~zzzrj). To further simplify the proof, following [8], we
only show how the embedding values can be set such that 〈~zzz t

vi ,~zzzrj , ~zzz t
vk〉 becomes a positive number if

(vi, rj , vk, t) ∈ W and a negative number if (vi, rj , vk, t) ∈ Wc. Extending the proof the case where
the score contains both components (〈~zzz t

vi ,~zzzrj , ~zzz t
vk〉 and 〈~zzz t

vk , ~zzzrj , ~zzz t
vi〉) can be done by doubling the

size of the embedding vectors and following a similar procedure as the one explained below for the
second half of the vectors.

6

Table 3: Statistics on ICEWS14, ICEWS05-15, and GDELT.

Dataset |V| |R| |T | |train| |validation| |test| |G|
ICEWS14 7,128 230 365 72,826 8,941 8,963 90,730

ICEWS05-15 10,488 251 4017 386,962 46,275 46,092 479,329
GDELT 500 20 366 2,735,685 341,961 341,961 3,419,607

Assume d = |R| · |V| · |T | · L where L ∈ N is a natural number. These vectors can be viewed as
|R| blocks of size |V| · |T | · L. For the jth relation rj , let ~zzzrj be zero everywhere except on the jth

block where it is 1 everywhere. With such a value assignment to ~zzzrj s, to find the score for a fact
(vi, rj , vk, t), only the jth block of each embedding vector is important. Let us now focus on the jth

block.

The size of the jth block (similar to all other blocks) is |V| · |T | · L and it can be viewed as |V|
sub-blocks of size |T | · L. For the ith entity vi, let the values of ~aaavi be zero in all sub-blocks except
the ith sub-block. With such a value assignment, to find the score for a fact (vi, rj , vk, t), only the ith

sub-block of the jth block is important. Note that this sub-block is unique for each tuple (vi, rj). Let
us now focus on the ith sub-block of the jth block.

The size of the ith sub-block of the jth block is |T | · L and it can be viewed as |T | sub-sub-blocks of
size L. According to the Fourier sine series, with a large enough L, we can set the values for ~aaavi ,
~wwwvi , and~bbbvi in a way that the sum of the elements of ~zzz t

vi for the pth sub-sub-block becomes 1 when
t = tp (where tp is the pth timestamp in T) and 0 when t is a timestamp other than tp. Note that this
sub-sub-block is unique for each tuple (vi, rj , tp).

Having the above value assignments, if (vi, rj , vk, tp) ∈ W , we set all the values in the pth sub-sub-
block of the ith sub-block of the jth block of ~aaavk to 1. With this assignment, 〈~zzz t

vi ,~zzzrj , ~zzz t
vk〉 = 1 at

t = tp. If (vi, rj , vk, tp) ∈ Wc, we set all the values for the pth sub-sub-block of the ith sub-block of
the jth block of ~aaavk to −1. With this assignment, 〈~zzz t

vi ,~zzzrj , ~zzz t
vk〉 = −1 at t = tp.

7

	Introduction
	Background and Notation
	Diachronic Embedding
	Experiments & Results
	Model Variants & Ablation Study

	Conclusion
	Experiments & Results
	Proof of Theorem

