
Improving Graph Attention Networks with
Large Margin-based Constraints

Guangtao Wang1, Rex Ying2, Jing Huang1, Jure Leskovec2
1JD AI Research, Mountain View, CA

2Department of Computer Science, Stanford University, Stanford, CA
1{guangtao.wang, jing.huang}@jd.com

2{rexying@stanford.edu, jure@cs.stanford.edu}

Abstract

Graph Attention Networks (GATs) are the state-of-the-art neural architecture for
representation learning with graphs. GATs learn attention functions that assign
weights to nodes so that different nodes have different influences in the feature
aggregation stage of the Graph Neural Network. In practice, however, induced at-
tention functions are prone to overfitting due to the increased number of parameters
and the lack of direct supervision on attention weights. Moreover, GATs also suffer
from over-smoothing the class decision boundary. Here we propose a framework to
address the weaknesses of GATs by proposing the use of margin-based constraints
on attention weights. We first theoretically analyze the over-smoothing behavior of
GATs and then develop an approach that uses constraints on the attention weights
according to class boundary and feature aggregation information. Furthermore, to
alleviate the overfitting problem, we propose additional constraints on the graph
structure. Extensive experiments and ablation studies demonstrate the effective-
ness of our method, which leads to significant improvements over the previous
state-of-the-art graph attention methods.

1 Introduction

Recently, a novel architecture leveraging attention mechanism in Graph Neural Networks (GNNs)
called Graph Attention Networks (GATs) was introduced [1]. GAT was motivated by attention
mechanism in natural language processing [2, 3]. It computes representation of each node by
attending to its neighbors via a masked self-attention. For each node, different weights are learned for
neighboring nodes by attention functions, so that the nodes in the same neighborhood have different
weights in the feature aggregation step of GAT. Inspired by such attention-based architecture, several
new attention-based GNNs have been proposed, and have achieved state-of-the-art performance on
node classification benchmarks [4, 5, 6, 7, 8, 9].
However, attention-based GNNs suffer from problems of overfitting and over-smoothing: (1) the
learned attention functions tend to overfit the training data because there is only one source to
guide the attention function learning: classification error, which is indirect and limited. (2) The
over-smoothing problem arises for nodes that are connected but lie on different sides of the class
decision boundary. Due to information exchange over these edges, stacking multiple attention
layers causes excessive smoothing of node features and makes nodes from different classes become
indistinguishable.
In this paper, we propose a new Constrained Graph Attention Network (C-GAT) that adds constraints
over the attention weight computation to solve the problem of overfitting and over-smoothing. We
develop an aggregation strategy to further remedy the over-smoothing problem at the class boundary
by selecting top k neighbors for feature aggregation. Furthermore, we also design an adaptive
layer-wise negative sampling strategy to train C-GAT efficiently and effectively.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

We evaluate the proposed approach on four node classification benchmarks: Cora, Citeseer and
Pubmed, as well as an inductive protein-protein interaction (PPI) dataset. Our extensive experimental
results and analyses demonstrate the benefit of the C-GAT model and show consistent gains over
state-of-the-art graph attention models on standard benchmarks for graph node classification.

2 Analysis of GATs
Notation. Let G = (V, E ,X) be a graph where V is the set of N nodes (or vertices), E ⊆ V × V is
the set of M edges connecting M pairs of nodes in V , and X ∈ RN×d represents the node input
features, and each row xi = Xi:. In this paper, we consider undirected graphs. Suppose AN×N
is the adjacency/weighted adjacency matrix of G with Ai,j ≥ 0, D = diag(d1, d2, · · · , dN) and
di =

∑N
j=1 Ai,j . And the random walk normalized Laplacian Lrw = D−1L.

Node classification. Suppose that Vl ⊂ V consists of a set of labeled nodes, the goal of node
classification is to predict the labels of the unlabeled nodes.
Attention-based GNN utilizes the following layer-wise attention based aggregate function for node
embedding on each node vi ∈ V:

h
(l+1)
i = σ(

∑
j∈Ni

α
(l)
i,jW

(l)h
(l)
j), α

(l)
i,j =

exp(φ
(l)
ω (h

(l)
i ,h

(l)
j))∑

k∈Ni
exp(φ(l)ω (h

(l)
i ,h

(l)
k))

(1)

Where W (l) ∈ Rd(l+1)×d(l) is a trainable weight matrix shared by l-th layer. σ is the activation
function. h(l)

i ∈ Rd(l) is the node embedding in l-th layer; h(0)
i = xi. Ni is the set of vi’s one-hop

neighboring nodes and also includes vi (i.e. there is a self-loop on each node). α(l)
i,j is the l-th attention

weight between the target node vi and the neighboring node vj , which is generated by applying
softmax to the values computed by attention function φ(l)ω , and ω is the trainable parameters of the
attention function. In this paper, we use GATs to refer to all attention-based GNN models.
The overfitting problem of GATs. The attention functions in GAT compute the attention weights
based on the features of pairs of connected nodes (see Eq. 1). To train such attention functions in
GATs, there is only one source to learn their parameters: the classification error. In other words, the
supervision of GATs to learn attention parameters is limited by the number of edges in graphs, and
indirect since the supervision signal only comes from node labels for node classification. In general,
smaller number of supervisions leads to overfitting [10]. The experimental study in Section 4 of
robustness analysis demonstrates that the overfitting easily occurs in GATs, especially for noisy data.
The over-smoothing problem of GATs. To facilitate the analysis, we focus on the attention aggre-
gation and simplify Eq. 1 in terms of matrix operation as Y = AX1, where AN×N is the attention
matrix, A(l)

ij = α
(l)
i,j if j ∈ Ni otherwise A

(l)
i,j = 0, and

∑N
i=1 α

(l)
i,j = 1. Then we have the following

proposition that indicates that a single GAT layer acts as a random walk Laplacian smoothing.
Proposition 1. Let matrix (I −A) be a random walk normalized Laplacian of the graph G. Then a
single attention layer is equivalent to the Laplacian smoothing operation. (Proof in Appendix A)
Based on the cluster assumption in node classification that the nodes in same connected component
tend to share same labels [11], the smoothing results in an easier classification problem. This
contributes to the better performance of GAT in node classification, compared to other GNN models.
Deeper GATs. To understand the behavior of GATs with deep layers, we first state Theorem 1 as
follows: let P be a transition probability matrix of a connected undirected graph G with N nodes,
P (t)(vi, vj) be the probability of being at node vj after t-step random walks on G starting at vi, and
dv be the degree of node v.
Theorem 1. If graph G has no bipartite components, there exists a random walk on G with transition
probability matrix P , that converges to a unique stationary distribution π. That is, for any pair of
nodes {vi, vj}, limt→∞ P (t)(vi, vj) = π(vj) =

dvj∑N
k dk

. (Proof in Appendix B)
We can view attention weight matrix A as a random walk transition probability matrix since Ai,j ≥ 0

and
∑N
j=1 αi,j = 1. In practice, attention weight matrices vary in different layers. Stacking multiple

GAT layers is equivalent to a matrix chain multiplication with different attention weight matrices.
Based on Theorem 1, we further derive Theorem 2 (proof in Appendix C), to show that GATs suffer
from over-smoothing when they go deep, even with different attention weights at every layer.

1Similar to [11], we omit the non-linearity activation function σ. In fact [12] shows evidence that similar
performance is observed in the case when there is no nonlinearity after the aggregation step.

2

Theorem 2. Let P (t) (t≥1) be a transition probability matrix of the connected undirected graph G,
corresponding to attention scores of layer t in the GNN, then limt→∞Πt

i=1P
(t) = π, where π is the

unique stationary distribution in Theorem 1.
In practice, most graphs contain bridge nodes that connect different components with different labels.
Theorem 2 states that if we increase the depth of GAT, due to the boundary nodes, the aggregated
node features of different components would become indistinguishable, leading to worse performance
of deep GATs (See the observation of over-smoothing in Appendix F). We call this phenomenon
over-smoothing of graph attention. We also extend the analysis to the multi-head attention-based
GATs in Appendix E.
Residual connection is an effective way to ensure good performance when increasing the depth of
Convolutional Neural Networks [13]. It has also been employed in GATs [1, 4]. Unfortunately, this
does not solve the over-smoothing problem in GATs as shown in the following.
Let A be a random walk transition probability matrix, we first define the transition probability matrix
of a lazy random walk as P = I+A

2 . At every step, the lazy random walk has 50% probability
of staying at the current node, and 50% probability of moving away from it. Hence the residual
connection Y = AX +X = (I +A)X is a lazy random walk based smoothing up to a constant
factor2. Therefore if the lazy random walk P is viewed as a transition probability matrix, by Theorem
2, the features of all nodes in a connected component converge to the same values if more GAT layers
are stacked (Appendix D gives the analysis of a lazy random walk).

3 Constrained Graph Attention Networks
To address the problem of overfitting and over-smoothing of GATs, we propose a new framework,
the constrained graph attention networks (C-GATs), via imposing constrains on both the attention
function and the feature aggregate function. With these constraints, we improve the generalization
ability and alleviate the problem of overfitting of GAT. In the following, we first introduce two
constraints on the attention computation, which involves two margin-based losses to guide the
training of graph attention. Then, based on the constrained attentions, we propose a new aggregation
function, which chooses a subset of neighboring nodes based on attention weights. We show that this
new scheme for feature aggregation reduces the over-smoothing of GAT.
Margin based Constraints on Attention. For a given node vi, let Ni be the set of its one-hop
neighboring nodes, N−i ⊂ Ni and N+

i ⊆ Ni 3 are the neighbors with different and same class labels
to vi. We propose the following two constraints on attention weights computation.

(i) Loss from Graph Structure based Constraint requires that attention weights between one-hop
neighboring nodes are greater than the rest of the nodes.

Lg =
∑
i∈V

∑
j∈Ni\N−i

∑
k∈(V\Ni)

max(0, φ(vi, vk) + ζg − φ(vi, vj)) (2)

(ii) Loss from Class Boundary Constraint requires that attention weights between nodes that share the
same labels are greater than those weights between nodes with different labels.

Lb =
∑
i∈V

∑
j∈N+

i

∑
k∈N−i

max(0, φ(vi, vk) + ζb − φ(vi, vj)) (3)

Where ζg≥0 and ζb≥0 are slack variables which control the margin between attention values.
φ(vi, vj) is the attention function. Let hi∈Rf and hj∈Rf be the features of nodes vi and vj , we use
φ(hi,hj) = LeakyReLU(MLP(Wr(hi||hj)) to compute the attention between two nodes vi and vj ,
Wr ∈ Rf ′×2f is a trainable matrix.
Adaptive Negative Sampling for GNN Training. Negative sampling has been proved to be an
effective way to optimize the loss function Lg in Eq. 2. We apply importance sampling to choose
negative example nodes, and estimate the node importance according to Proposition 2.
Proposition 2. The importance of a node vi to feature aggregation of G in l-th layer is proportional
to

∑N
j=1 α

(l)
j,i . (See proof in Appendix H)

With these two constraints, we optimize the following loss function for node classification:

L = Lc + λgLg + λbLb, (4)

2The constant factor depends only on number of layers and is the same for all nodes
3⊆ is due to the self-loop connection.

3

Methods Cora Citeseer Pubmed PPI∗

G
N

N

GCN [14] 86.3(0.4) 75.6(0.3) 86.8(0.3) 71.0†

G-SAGE [15] 86.9(0.4) 76.5(0.4) 85.7(0.4) 76.8‡

GAT [1] 87.2(0.3) 77.3(0.3) 87.0(0.3) 97.3(0.02)
C-GAT 88.4(0.3) 79.9(0.3) 87.6(0.3) 98.8(0.05)

A
bl

at
io

n w/o Lg 88.3(0.2) 78.7(0.2) 87.2(0.3) 98.1(0.04)
w/o Lb 88.2(0.3) 79.3(0.3) 87.2(0.2) 97.9(0.04)
w/o top k 88.4(0.2) 78.5(0.2) 87.3(0.2) 97.5(0.03)
w/o NINS? 88.2(0.3) 78.9(0.2) 87.4(0.3) 98.2(0.04)

Table 1: Classification Accuracy Ablation and Comparison (G-SAGE:
GraphSAGE; the number in “()” represents std of 10 runs of the algorithm;
∗: The accuracy of the attention based GNN models on PPI: GaAN [5]
98.7 ± 0.02 and GeinePath [4] 97.9, respectively; †: The best accuracy
of GCN on PPI reported in [4]; ‡: The best accuracy of GraphSAGE on
PPI reported in [1]; ? NINS: Node Importance based Negative Sampling.)

0 10 20 50
(a) Adding Ratio (%)

70

75

80

85

90

ac
cu

ra
cy

 (%
)

GAT
C-GAT

2-layer 4-layer 8-layer
(b) Impact of depths on GATs

40

60

80

100 GAT
C-GAT (k = 8)

10 20
(c) C-GAT varing neighbor numer k
80

82

84

86

88

Cora
Cora (10% noise)

Figure 1: Experiments on Cora. Left: Robustness Analy-
sis: Train on original graphs and perform testing on graphs by
adding edges randomly; Middle: Deeper GAT: Classification
accuracy comparison between GAT and C-GAT with different
depth; Right: Sensitive Analysis: Impact of neighbor number
k on classification accuracy of C-GAT.

where Lc represents the loss derived from the node classification error (e.g., cross entropy loss for
multi-class node classification); λg ≥ 0 and λb ≥ 0 are two weight factors to make trade-offs among
these losses, which are data dependent.
Constrained Feature Aggregation. For each node, the aggregate function only makes use of the
features from neighbors with top k attention weights rather than all neighbors. From the constraint
on attention computation in Eq. 3, attention weights of nodes from different classes should be small.
Therefore, picking up nodes with top k attention weights would not only keep the smoothing effect
on node features within the same class but also drop edges that connect different classes due to small
attention weights.
4 Experimental Study
We investigate the proposed algorithm C-GAT in the following four aspects: (1) classification
performance comparison; (2) robustness analysis of whether the C-GAT is effective in overcoming
the overfitting problem, and improving generalization on unseen graph structure; (3) the depth of
GAT models, to demonstrate whether C-GAT can prevent the over-smoothing problem suffered by
GAT and (4) sensitivity analysis of the number of neighbors k used in feature aggregate functions.
(See the data information and hyper-parameter setting in Appendix G)

(a) Classification Performance Comparison: From Table 1, we observe that C-GAT performs
consistently better than all baseline models across all benchmarks. Specifically, we improve upon
GAT with absolute accuracy gain of 1.2%, 2.6%, 0.6% and 1.5% on Cora, Citeseer, PubMed
and PPI, respectively. Especially for the inductive learning problem PPI, we obtain the new
state-of-the-art classification performance [4, 5]

(b) Robustness Analysis: we observe that randomly adding edges might connect different classes
together. This aggravates the over-smoothing problem of GAT. However, from Fig. 1 (a), C-GAT
still gets good performance even when the ratio of adding edges is up to 50%. Due to the class
boundary constraint, C-GAT assigns small attention values on these boundary edges. Moreover,
the proposed k selected neighbor based feature aggregation function further reduces such negative
impacts (see more results on robustness in Appendix).

(c) Deeper GAT: Fig. 1 (b) compares C-GAT and GAT with different depths on “Cora”; In contrast
to the degradation of GAT with deeper layers due to significant oversmoothing, C-GAT maintains
good classification performance with bigger number of attention layers. This means that C-GAT is
able to effectively overcome the problem of oversmoothing. This demonstrates the advantage of
C-GAT especially in graph-level tasks where depth is critical [16].

(d) Sensitive Analysis of Neighbor Number k: we randomly add 10% edges to “Cora” to increase
the chance of information propagation among different classes and then investigate how to set k on
these noisy graphs. From Fig. 1 (c), we observe that the classification accuracy first increases to
a peak value and then stabilizes or slightly decreases. This means that k plays a role of making
trade-off between under-smoothing (not enough smoothing to tackle noise) and over-smoothing.

5 Conclusion
In this paper we provide analysis of the weakness of GAT models: overfitting of attention functions
and over-smoothing of node representations. We propose a novel approach called constrained graph
attention Network (C-GAT), to address these weaknesses of GAT by guiding the attention computation
during GAT training using margin-based constraints. In addition, a layer-wise adaptive sampling
approach is proposed for augmenting attention training with effective negative examples. Furthermore,
to alleviate the over-smoothing problem we propose a new feature aggregate function which only
selects the neighbors with top K attention weights rather than all the neighboring nodes. Extensive
experiments on common benchmark datasets have verified the effectiveness of our approach, showing
significant gains in accuracy on standard node classification benchmarks, especially in cases of deep
models and noisy data, compared to the state-of-the-art GAT models.

4

References
[1] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua

Bengio. Graph attention networks. In ICLR, 2018.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In NAACL, 2019.

[4] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In AAAI, 2018.

[5] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated
attention networks for learning on large and spatiotemporal graphs. In UAI, 2018.

[6] Seongok Ryu, Jaechang Lim, and Woo Youn Kim. Deeply learning molecular structure-property
relationships using graph attention neural network. arXiv preprint arXiv:1805.10988, 2018.

[7] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. Graph classification using structural attention.
In KDD. ACM, 2018.

[8] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph
neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

[9] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A Alemi. Watch your step:
Learning node embeddings via graph attention. In NIPS, 2018.

[10] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of
statistical learning: data mining, inference and prediction. The Mathematical Intelligencer,
2005.

[11] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI, 2018.

[12] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. In ICML, 2019.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[14] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

[16] Benedikt Bünz and Matthew Lamm. Graph neural networks and boolean satisfiability. arXiv
preprint arXiv:1702.03592, 2017.

[17] Dana Randall. Rapidly mixing markov chains with applications in computer science and physics.
Computing in Science & Engineering, 2006.

[18] László Lovász et al. Random walks on graphs: A survey. Combinatorics, Paul erdos is eighty,
1993.

[19] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[20] Fan Chung. Laplacians and the cheeger inequality for directed graphs. Annals of Combinatorics,
2005.

[21] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast
graph representation learning. In NIPS, 2018.

5

A Proof of Proposition 1
Before we give the proof, we first introduce the concepts of random walking normalized Laplacian
and Laplacian smoothing as follows.
Random walking Normalized Laplacian Let AN×N be the attention weight matrix, D =

diag(d1, d2, · · · , dN) and di =
∑N
j=1 Ai,j , then the graph Laplacian of G is defined as L = D−A.

And Lrw = D−1L is the random walking normalized Laplacian of G.
Laplacian Smoothing [11] on each row of the input feature matrix X is defined as:

yi = (1− λ)xi + λ

N∑
j

αi,j
di

xj , (5)

where 0 < λ ≤ 1 is a parameter to controls the smoothness, i.e. the importance weight of the node’s
features with respect to the features of its neighbors. We can rewrite the Laplacian smoothing in Eq.
5 in matrix form:

Y = (I − λD−1L)X = (I − λLrw)X (6)

Proof. As AN×N is the attention weight matrix, di =
∑N
j αi,j = 1, then we can get that D = I .

The random walk normalization of G is Lrw = D−1L = I−1(I −A) = I −A.
We can rewrite the graph attention operation Y = AX as Y = (I − Lrw)X . According to the
formulation of Laplacian smoothing in Eq. 5, we can conclude that graph attention is a special form
of Laplacian smoothing with λ = 1.

B Proof of Theorem 1
Proof. (1) We can view the random walk on graph G as a Markov chain with P . As G is undirected,
connected and non-bipartite graph, the Markov chain is ergodic [17, 18]. And any finite ergodic
Markov chain converges to a unique stationary distribution π [17]. (2) According to Perron-Frobenius
Theorem [19, 20], such stationary distribution is just the Perron vector of P . And for the undirected
graph, its Perron vector w.r.t. vi is dvi/

∑N
j dvj .

C Proof of Theorem 2
Proof. (1) Let At be the attention matrix derived in t-th layer of GAT. According to Theorem 1, the
random walk on the graph with At converges to a unique stationary distribution which depends on the
degrees of the graph regardless of At. i.e., πt = π where πt denotes the stationary distribution w.r.t.
At and π is the unique stationary distribution. (2) Let fki be the ith row of Πk

t=1Ak, according to the
converge analysis of random walk in [17], we have ||fki −πk|| ≤ λk||f

k−1
i −πk|| = λk||fk−1i −πk1 ||

as πk = πk−1, where λk is the mixing rate of random walk with Ak. By exploring the equation
recursively, ||fki − π|| ≤ λk||fk−1i − π|| ≤ · · · ≤ Πk

t=1λt||f1i − π||. Moreover, for strongly
connected graph, the mixing rate λt ∈ (0, 1) according to ref1. Then, limk→∞ ||fki − π|| = 0. i.e.,
limk→∞ fki = π.

D Convergence Rate of Lazy Random Walk
Theorem in [20] answers how fast the lazy random walk based smoothing process converges to a
stationary distribution.

Theorem 3. Suppose that a strongly connected directed graph G on n nodes has Laplacian eigenval-
ues 0 = λ0 ≤ λ1 · · ·λn−1. Then G has a lazy random walk with the rate of convergence of order
2
λ1
(− logminv π(v)). Namely, after at most t ≥ 2

λ1
(− logminv π(v) + 2c) steps, we have:

∆(t) , max
1≤i≤n

(
∑

1≤j≤n

(P (t)(vi, vj)− π(vj))2

π(vj)
)

1
2 ≤ e−c.

Theorem 3 implies that it is difficult to prevent the over-smoothing of deep GAT by simply adding
residual connections. This phenomenon has also been confirmed by experiments in [4].

6

E Multi-head Attention
Multi-head Attention is employed in GAT [1]. Specially,K independent attention heads are computed
for feature aggregation at each layer, and the output of that layer is the concatenated outputs from all
heads. To facilitate the analysis, we only focus on the attention aggregation and simplify Eq. 1 on each
head as X(l,k) = A(l,k)X l−1, where A(l,k) be the k-th (1≤ k ≤ Kl) head attention matrix in l-th
layer of GAT, Kl is the head number of l-th layer. The output of l-th layer X l = ‖Kl

k=1(A
(l,k)X l−1),

where ‖ denotes concatenation along the column (hidden) dimension. By expanding this equation
for the previous layer, we can get that each independent component A(l,i)X l−1 = A(l,i) ‖Kl−1

k=1

(A(l−1,k)X l−2) = ‖Kl−1

k=1 (A(l,i)A(l−1,k)X l−2). We can perform this expansion recursively for all
layers. Therefore the output of l-th layer consists of multiple components, where each component
can be viewed as a matrix-chain multiplication on l attention matrices from different heads and layers.
According to Theorem 2, these matrix-chain multiplications will converge to the unique distribution
π if l←∞. This means that multi-head attention GATs still suffer from over-smoothing problem if
they go deep.

F Observation of Over-Smoothing on Data “Citeseer”
Fig. 2 shows the training loss, training error and the validation error of GAT models with different
layers on benchmark dataset “Citeseer” (See detailed information of the data in Table 2). From this
figure, we can observe that the deeper networks can still converge, but a performance degradation
problem occurs: with the depth increasing, the accuracy degrades. In this paper, we demonstrate that
such performance degradation is mainly due to over-smoothing effect of deeper GAT models.

0 200 400 600 800
epoch

1

2

3

4

5

6

tra
in

in
g

lo
ss

2-layer
4-layer
6-layer
8-layer

0 200 400 600 800
epoch

0.3

0.4

0.5

0.6

0.7

0.8

tra
in

 e
rro

r

2-layer
4-layer
6-layer
8-layer

0 200 400 600 800
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

de
v

er
ro

r

2-layer
4-layer
6-layer
8-layer

Figure 2: Training loss (left), training error (middle) and validation error (right) on Citeseer with 2-layer, 4-layer, 6-layer and 8-layer GAT
models. The deeper network has higher training error, and thus validation error.

G Benchmark Information and Hyper-Parameter Settings
Data Set. Table 2 summarizes the statistical information of these datasets. Our experiments are
conducted over standard data splits [21].

Table 2: Statistical Information on Benchmarks
Name Nodes Edges Classes Node features Train/Dev/Test
Coraa 2708 5429 7 1433 1,208/500/1,000

Citeseera 3327 4732 6 3703 1,827/500/1000
Pubmeda 19717 88651 3 500 18,217/500/1,000

PPIb 56944∗ 818716 121? 50 20/2/2�

a: transductive problem; b: inductive problem; ?: multi-label; ∗: total nodes in 24
graphs; �: 20 graphs for train, 2 graphs for validation and 2 graphs for test.

Hyper-parameter Settings. For three transductive learning problems, we use two hidden layers
with hidden dimension as 32 for Cora, 64 for Citeseer, and three hidden layers with hidden dimension
32 for Pubmed; we set the number of neighbors k used in feature aggregate function as 4 for Cora,
Citerseer, and 8 for Pubmed. For the inductive learning problem PPI, we use three hidden layers
with hidden dimension 128, and set k as 8. We make use of Adam as the optimizer and perform
hyper-parameter search for all baselines and our method over the same validation set. The set of
margin values (ζg, ζb) used in (Lg , Lb) is {0.1, 0.2, 0.3, 0.5} and the trade-off factor (λg, λb) of two

7

losses is set as {1, 2, 5, 10}, learning rate is set as {0.001, 0.003, 0.005, 0.01} and `2 regularization
factor is set as {0.0001, 0.0005, 0.001}. We train all models using early stopping with a window size
of 100.

H Proof of Proposition 2
Proof. Let’s first review the feature aggregate function in GAT:.

h
(l+1)
i = δ(

∑
j∈Ni

α
(l)
i,jW

(l)h
(l)
j) = δ(

N∑
j=1

α̂
(l)
i,jW

(l)h
(l)
j), (7)

where α̂i,j = αi,j if j ∈ Ni, otherwise α̂i,j = 0. We can view α̂i,j as the importance of vj
of vi given the graph with features H(l) = [h1,h2, · · · ,hN]T . We can rewrite it as a form of
conditional probability α̂i,j = p(vj |vi,G,H(l)). If we define q(vi|v1, v2, · · · , vN) (denoted as q(vi)
for simplification) as the probability of sampling vi given all the nodes of the current layer, then
we get α̂(l)

i,j =
p(vj |vi)
q(vi)

. Then, according to Bayes’s formula, we can get q(vi|v1, v2, · · · , vN) ∝∑N
j=1 α̂

(l)
j,i =

∑N
j=1 α

(l)
j,i .

I Experimental Results of Robust Analysis and Deeper GAT
To evaluate the robustness of C-GAT, in particular, whether the induced attention function is robust to
the graph structure, we conduct experiments by perturbing edges in “Cora” data. Fig. 3 presents the
experimental results. From this figure, we can observe that:

0 10 20 50
(a) Dropping Ratio (%)

70

75

80

85

90

ac
cu

ra
cy

 (%
)

GAT
C-GAT

0 10 20 50
(b) Adding Ratio (%)

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

ac
cu

ra
cy

 (%
)

GAT
C-GAT

2-layer 4-layer 8-layer
(c) Impact of depths on GAT models

20

30

40

50

60

70

80

90
GAT
C-GAT (k = 8)

Figure 3: Left: randomly dropping edges in training stage and performing test on the original graph over “Cora”; Middle: Randomly adding
edges in training stage and performing test on the original graph “Cora”. For adding edges, we first randomly select a set of nodes according
to a given sampling ratio, and then random add one edge on these nodes. Right: Classification performance comparison between GAT and
C-GAT with different depth on “Citeseer”

(a) By randomly dropping some edges in training stage (see Fig. 3 (a)), C-GAT get a relative stable
performance when increasing the ratio of dropped edge. In contrast, the performance of GAT shows
a descending trend. This is because of that, for a missing edge in testing stage, the attention value
w.r.t. this edge in C-GAT is still convincible as the two constraints. That is, if the missing edge
connected two nodes share same labels, according to the constraints, the attention weight will be
higher and results in a better smoothing operator. In contrast, if the missing edge connected two nodes
with different labels, because of proposed constraints and proposed feature aggregation function, the
impact of such edge can be eliminated as well. In contrast, for GAT without these constraints, there
is still information propagation no matter the missing edge lies in classification boundary or not, and
even assign large attention values for the classification boundary edges, and lead to over-smoothing.
(b) By random adding some edges in training stages (see Fig. 3 (b)),the performance of C-GAT still
keeps relative stable but GAT’s performance decreases when increasing the ratio of adding edges.
This is because of that, the randomly adding edges might connect different classes together. This will
result in more information propagation among different classes and easily lead to the over-smoothing.
This hurts the quality of the training data. The constraints in C-GAT can be viewed as a data cleaner
which can improve the quality of the training data. In contrast, GAT has no such ability and leads to
the induced model perform worse in testing stage.
(c) Compares C-GAT and GAT with different depths on “Citeseer”. Our proposed C-GATs maintain
good classification performances with increasing attention layers. Again these results prove over-
smoothing is not an issue for C-GAT.

8

	Introduction
	Analysis of GATs
	Constrained Graph Attention Networks
	Experimental Study
	Conclusion
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Convergence Rate of Lazy Random Walk
	Multi-head Attention
	Observation of Over-Smoothing on Data ``Citeseer''
	Benchmark Information and Hyper-Parameter Settings
	Proof of Proposition 2
	Experimental Results of Robust Analysis and Deeper GAT

