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Abstract

Automatic representation learning of key entities in electronic health record (EHR)
data is a critical step for healthcare informatics that turns heterogeneous medical
records into structured and actionable information. Here we propose ME2Vec, an
algorithmic framework for learning low-dimensional vectors of the most common
entities in EHR: medical services, doctors, and patients. ME2Vec leverages diverse
graph embedding techniques to cater for the unique characteristic of each medical
entity. Using real-world clinical data, we demonstrate the efficacy of ME2Vec over
competitive baselines on disease diagnosis prediction.

1 Introduction
Recent years have seen an explosion in the growth of electronic health record (EHR) data. One major
challenge of representation learning in EHR comes from the heterogeneity of the various medical
entities that compose EHR data, including diagnoses, prescriptions, medical procedures, doctor
profiles, and patient demographics, etc. Furthermore, the relational and longitudinal structure of
organizing medical entities in patient medical records (or patient journeys) makes it more challenging
to design effective and scalable representation learning algorithms: a patient may visit one or more
clinical sites multiple times with irregular time intervals, with each visit generating a varying number
of medical services (diagnoses, prescriptions, or procedures) from possibly different doctors.

To address the above challenges, Choi et al. leveraged the multilevel structure of EHR data where
diagnosis codes categorize treatment codes within each visit and learned a multilevel medical
embedding for predictive healthcare [1, 2]. Though being effective, their approaches do not consider
the temporal characteristics unique to individual medical services, hence cannot properly address the
irregular time intervals of visits that are pervasive in patient journeys. Some recent works treated
medical services in patient journeys as words in documents [3, 4], and since similar words (medical
services) tend to share similar contexts, word embedding techniques such as Word2Vec [5] can be
adopted to train the embedding vectors of medical services. In this approach, a key design choice is
the length of context window, or temporal scope, which should preferably vary for different medical
services. As manually specifying the temporal scope for each service is infeasible, an attention
mechanism is proposed in [4] to derive a “soft” temporal scope for each service, where the attention
coefficients can be trained jointly with the parameters in Word2Vec. A caveat of this approach is that
the context window has to be sufficiently large for medical services with long time spans of influence,
which would significantly elevate the computational overheads for all services. Some recent works
explored the study of patient similarity, which is believed to be an enabling technique for various
healthcare applications such as cohort analysis and personalized medicine [3, 6, 7, 8].

In this work, we propose a graph-based, hierarchical medical entity embedding framework ME2Vec
that can address the aforementioned challenges. At the service level, we propose to characterize
the importance of heterogeneous medical services with their co-occurrence frequencies. Namely,
important services are typically infrequent in patient journeys, hence their co-occurrence frequencies
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with other services are smaller than those of routine services. With a proximity-preserving embedding
approach, important services with small co-occurrence frequencies will be far away from other
services in the embedding space, thus emphasizing their importance via “spatial isolation”. At the
doctor and patient level, a fundamental principle we adhere to is “It’s what you do that defines you”,
which empowers the interpretability of embeddings. For example, the embedding vector of a doctor is
solely calculated from the doctor’s conducted medical services. To preserve the network proximities
of patient vertices w.r.t. both doctor and service vertices, we develop a method called duplication
& annotation that can convert an attributed multigraph to a simple graph without loss of structural
information, to which efficient and scalable graph embedding techniques can be applied with ease.

Overall, ME2Vec provides a unified solution of embedding medical entities, thus can serve as a
general-purpose representation learning algorithm for EHR data.

2 Methods
Service Embedding We create the graph of medical services Gsvc = (S, Esvc), where S =
{s1, s2, . . . , s|S|} is the set of medical services, and Esvc is the set of edges connecting medical
services. The weight of eij denotes the co-occurrence frequency of services si and sj . To obtain
the adjacency matrix Asvc ∈ R|S|×|S|, we use a T -day context window to traverse all patient
journeys with no overlap. At each location, we update Asvc with the count of the occurrence of each
unique pair of medical services appeared within the T days of the current window. Note that the
co-occurrence frequencies of services are summed over different patients, thus reflecting a generalized
knowledge of the time intervals between medical services, which can enhance the robustness and
transferability of the learned service embedding.

To embed medical services, we first obtain the adjacency matrix Asvc from patient journeys and use
it to generate biased random walks, then optimize the embeddings of medical services by maximizing
the probability of each service “seeing” its neighbors in the walks via Word2Vec.

Doctor Embedding We note that medical services conducted by a doctor exhibit patterns that are
consistent with the doctor’s primary specialty. For example, prescriptions and/or medical procedures
administered by an obstetrician (or gynecologist) are in general different from those by an oncologist.
Thus we train the embedding of a doctor in an auxiliary task by predicting the doctor’s primary
specialty from his or her conducted medical services. We initialize the embedding of a doctor as the
weighted average of the embedding vectors of the medical services conducted by the doctor.

We use the Graph Attention Network [9] to predict doctor specialties from services. For a doctor dj
whose conducted medical services are {si}(dj), the normalized attention coefficient αij between the
doctor embedding dj and each of the service embeddings {si}(dj) conducted by doctor dj is

αij =
exp

(
LeakyReLU(aT [Wdj ||Wsi])

)∑
sk∈Ndj

exp (LeakyReLU(aT [Wdj ||Wsk]))
. (1)

where {d, s} ∈ Rp, a ∈ R2p′
, W ∈ Rp′×p, LeakyReLU is the Leaky Rectified Linear Unit with a

negative input slope of 0.2 [10], ·T represents transposition, and ‖ is the concatenation operation.
{W,a} are parameters of the aggregation functions that “aggregate” the information of neighboring
service vertices into the targeted doctor vertex.

The updated embedding vector of doctor dj can then be obtained as a linear combination of the
associated service embeddings weighted by corresponding attention coefficients. We adopt a K-head
attention, such that the output dimension of the attention layer is Kp′ instead of p′:

d′j =

K

‖
k=1

σ

 ∑
si∈Ndj

αk
ijW

ksi

 . (2)

Note that we have already obtained si, thus making the doctor embedding a simper task than ordinary
graph embedding wherein the embeddings of all nodes are unknown and to be learned.

Patient Embedding The similarity between patients can be defined from the perspectives of shared
doctors and/or services. In general, we expect the patient embedding can facilitate that patients are
more similar to each other if they receive the same medical services from the same doctors.
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The versatile forms of patient similarity can be formalized as a bipartite multigraph Gpat, where the
two disjoint sets of vertices (P and S) represent the patients and services, respectively. A multigraph
allows multiple edges connecting a node pair, which precisely models the scenario that a patient may
have received the same service multiple times from different doctors. An edge connecting patient pk
and service si carries two attributes: the doctor dj who treated pk with si, and the weight wpk→dj→si
denoting the count of the service.

We propose a simple and scalable node embedding algorithm tailored for attributed multigraph based
on LINE [11]. We design a procedure duplication & annotation to convert Gpat into a simple graph
with no attributes. We first duplicate each service node by the number of unique attributes of the
edges linked to the node. A service node will not be duplicated if all its edges are of the same attribute.
After duplication, a service node must connect to either multiple edges with the same attribute or a
single attributed edge. We then annotate each service node with the attribute of its edges, and remove
the doctor attribute from its edges. Annotation can be implemented as a linear transformation of the
concatenation of the doctor and service embedding vectors, which we have already obtained:

hsi,dj
= Wa[si||dj ] + ba, (3)

where Wa ∈ Rp′′×(p+p′), ba ∈ Rp′′
, and hsi,dj

∈ Rp′′
is the embedding of the new hybrid node.

In LINE, node embeddings are optimized by preserving nodes’ first-order and second-order proximi-
ties. As in patient embedding, we are dealing with a bipartite graph, and that the embedding vectors
of the hybrid nodes are already known (except for the transformation parameters), we can skip the
first-order part and optimize the second-order part only. For a patient pk, its second-order proximity
relative to other patients is defined over the “context” probability of seeing a hybrid node hsi,dj

:

p2(hsi,dj
|pk) =

exp(hsi,dj
· pk)∑

l∈{h} exp(hl · pk)
, (4)

where pk ∈ Rp′′
and {h} is the collection of all hybrid nodes. Meanwhile, each context probability

p2 corresponds to an empirical distribution defined by the edge weights:

p̂2(hsi,dj
|pk) =

wpk→hsi,dj∑
l∈Npk

wpk→hl

, (5)

whereNpk
represents the collection of all hybrid node neighbors of patient pk. Then we can optimize

{pk}Pk=1, Wa, and ba by minimizing the Kullback–Leibler (KL) distance between p̂2 and p2:

Lpat = −
∑

(i,j,k)∈Epat

wpk→hsi,dj∑
l∈Npk

wpk→hl

log(p2(hsi,dj |pk)), (6)

where Epat is the set of all edges of the patient-service bipartite graph after duplication & annotation.

3 Experiments
Experimental Setup We test the proposed method on a proprietary clinical dataset that consists
of medical records for patients who are either diagnosed as chronic lymphocytic leukemia (CLL) or
undiagnosed as CLL but with related risk factors and/or symptoms. The CLL-related risk factors and
symptoms are pre-specified by a medical expert. For CLL patients, we pulled their one-year medical
records backward from six months before the date of diagnosis.

We compare ME2Vec with the following baselines for medical entity embedding: node2vec [12],
LINE, spectral clustering (SC) [13], and non-negative matrix factorization (NMF) [14]. For ME2Vec,
the context window length T is set as 8 days, and the number of attention heads K is 4. The number
of negative samples when training all methods is set as 10. The dimensions of embeddings for all
entities are set as 128. The remaining parameter settings for all baselines are as default.

Visualization of Service and Doctor Embedding We visualize the trained embedding vectors of
all medical services and some doctors in Figure 1. On the left part of Figure 1, infrequent services
(with larger IDs) spread out in the embedding space, whereas routine services (with smaller IDs)
aggregate themselves closely in the centering area, which ensures the “spatial isolation” of important
medical services. On the right, we can see a clear separation of doctors with different primary
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Figure 1: 2-dimensional visualization of service and doctor embeddings after PCA and t-SNE, respectively.
Left: Each red dot represents a medical service with its ID labeled. Each blue line connecting two dots indicates
that the two services co-occur as least once. Right: Each dot represents a doctor, with its color indicating the
doctor’s primary specialty. Doctors with five different primary specialties are displayed for illustration.

Table 1: Performance of node classification in micro-F1 and macro-F1.

Algorithms Micro-F1 Macro-F1

20% 40% 60% 80% 20% 40% 60% 80%

ME2Vec 0.869 0.877 0.878 0.879 0.664 0.679 0.682 0.676

node2vec (service) 0.865 0.875 0.876 0.878 0.613 0.630 0.632 0.640
node2vec (doctor) 0.850 0.862 0.860 0.861 0.474 0.466 0.462 0.463

LINE (service) 0.855 0.864 0.866 0.866 0.587 0.592 0.592 0.586
LINE (doctor) 0.854 0.863 0.860 0.861 0.470 0.465 0.462 0.463

SC (service) 0.862 0.861 0.861 0.868 0.463 0.463 0.463 0.465
SC (doctor) 0.862 0.861 0.861 0.868 0.463 0.463 0.463 0.465

NMF (service) 0.868 0.870 0.869 0.879 0.584 0.586 0.589 0.600
NMF (doctor) 0.861 0.860 0.860 0.867 0.469 0.472 0.470 0.469

specialties. For example, nephrology doctors are far away from cardiovascular disease doctors, while
radiation oncology doctors are even further away from the rest.

Node Classification We first train ME2Vec and the baselines on the entire dataset to obtain patient
embeddings for each of the methods. Unlike ME2Vec, the baselines cannot integrate information
from both doctors and services at the same time. To address this, we create two bipartite graphs from
the dataset that model the patient-doctor and patient-service relations, respectively. Therefore each
baseline has two versions of patient embeddings, with one learned from the patient-service graph,
and the other learned from the patient-doctor graph. We tried simply concatenating the two versions
of embeddings, however the performance was no better than using them separately, thus not reported.

Next, we use the patient embeddings in the training set as well as their CLL diagnostic labels to
train a logistic regression (LR) classifier with L2 regularization. After that, we predict the diagnostic
labels of patients in the testing set from their embeddings using the trained LR classifier. We vary
the training ratio from 20% to 80%, and under each training ratio we repeat the experiment for 10
times with randomized train/test split and report the average Micro-F1 and Macro-F1 in Table 1. The
results show that ME2Vec outperforms all the baselines. All the baselines achieve consistently poorer
performance on the patient-doctor graph, suggesting their common weakness of extracting useful
information from the patient-doctor relation.

4 Conclusions
In this paper, we propose a unified and hierarchical medical entity embedding framework ME2Vec for
representation learning of EHR data. We design a time-aware service embedding that can leverage
the temporal profiles of medical services to characterize their importance towards evaluating patient
similarity. Moreover, we develop an effective approach of node embedding for attributed multigraph
that uniquely addressed the difficulty of patient embedding learning from both doctors and services.
We conduct experiments on a real-world clinical dataset, and show that ME2Vec outperforms strong
baselines, thanks to its unified and hierarchical structure of information fusion.
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