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Abstract

Fast adaptation to new data is one key facet of human intelligence and is an unex-
plored problem on graph-structured data. Few-Shot Link Prediction is a challeng-
ing task representative of real world data with evolving sub-graphs or entirely
new graphs with shared structure. In this work, we present a meta-learning ap-
proach to Few Shot Link-Prediction. We further introduce Meta-Graph, a meta-
learning algorithm which in addition to the global parameters learns a Graph
Signature function that exploits structural information of a graph compared to
other graphs from the same distribution for even faster adaptation and be�er
convergence than vanilla Meta-Learning.

1 Introduction

One of the hallmarks of human intelligence is fast adaptation, i.e., the ability to learn and adapt
to novel tasks when presented with minimal evidence. Gradient based meta-learning approaches
[2, 13] a�empt to achieve fast adaptation by learning a set of global parameters that are shared
across tasks and that can then be used as a good initialization for new, related tasks. �ese meta-
learning approaches have achieved state-of-the-art results across numerous fast adaptation tasks
in recent years, e.g., for reinforcement learning [6] and few-shot image classi�cation [6, 13].

However, while meta-learning algorithms have successfully been deployed in traditional deep
learning domains such as images [14], or text [10], graph-structured data has received li�le at-
tention. Meta-learning for graph structured data represents a practical se�ing for many real-world
problems where only a limited set of sub-graphs from a larger graph are available and retrain-
ing a model is computationally expensive. Furthermore, when only a sparse subset of edges are
observable—e.g., in a new social network—meta-learning can be a viable solution for e�ective rec-
ommendation provided there are training graphs that share structural similarities with the new
sparse one.

Present Work. In this work, we adapt the classical gradient-based meta-learning formulation for
few shot classi�cation to the graph domain. Speci�cally, we consider a distribution over graphs
as the distribution over tasks from which a global set of parameters is learned. We consider the
challenging task of predicting missing links for each graph (i.e., link prediction) when only a small
fraction of the edges can be observed. To further bootstrap fast adaptation to new graphs we
also introduce a graph signature that utilizes the similarity, from the perspective of meta-learning,
between the new graph and the previous graphs seen during training. We experimentally validate
our approach on two standard graph datasets. We �nd that our meta-learning based approach
successfully achieves fast adaptation, while also converging to be�er overall solutions in many
experimental se�ings.
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Figure 1: Le�: Meta-Graph Architecture. Right: Meta-Graph Algorithm for link-prediction on
sparse graphs with parameters updates to θ, φ, ψ

2 Background

Variational Graph Autoencoder. One of the most prominent approaches to unsupervised learn-
ing is the Variational Autoencoder (VAE) [7]. For data structured as a graph, an analogous Varia-
tional Graph Autoencoder (VGAE) has been proposed [9]. Formally, given a graph G = (V, E), with
N = |V | nodes, a weight matrix W , an adjacency matrix A and node feature matrix X ∈ RN×D ,
the VGAE learns both an inference model that e�ectively encodes each node into an embedding
vector as well as a generative model that scores the likelihood of an edge existing between pairs
of nodes. �e parameters of the inference or recognition network are shared across all nodes
in G, e�ectively amortizing the inference process needed to de�ne the approximate posterior,
q(z|X,A) =

∏N
i=1 q(zi|X,A) where q(z|X,A) = N (zi|µi, diag(σ2

i )). Conversely, the genera-
tive network models is de�ned by p(A|Z) =

∏N
i=1

∏N
j=1 p(Ai,j |zi, zj), that is the likelihood of an

edge existing between the node pairs. In much the same vein, the overall loss function optimizes
for the variational lower bound given by:

LG = Eq[log p(A|Z)]−KL[q(Z|X,A)||p(z)] (1)

Optimizing, this lower bound e�ectively maximizes the log likelihood of the data as the
KL−divergence is positive by de�nition.

Meta-Learning. Humans have a remarkable ability to perform new tasks having only been brie�y
exposed to them. Much of this is a�ributed to the fact that skills that were learned in previous ex-
periences can be reused, and thus not relearned from scratch, to bootstrap the learning process in
a new task. In meta-learning or learning to learn [4, 3, 17, 15], the objective is to learn from prior
experiences to form inductive biases for fast adaptation to unseen tasks. While there are many ap-
proaches to meta-learning, in this work we focus on a class of approaches known as gradient-based
meta-learning, where stochastic gradient descent is used to backpropagate through the learning
process itself. Let D be a dataset which de�nes a distribution over tasks T with some shared
structure and, each task Tj de�nes a distribution over datapoints, xj , which is to be optimized by
the meta-learner to produce task speci�c parameters. In the few-shot learning se�ing, the meta-
learner observes up toN samples from each task —i.e. xj1 , ..., xjN ∼ p(Tj) with the goal of �nding
a set of shared parameters, θ, over tasks. �ese global parameters are optimized such that when a
few gradient descent steps are taken from the initialization, θ, given a small sample of points from
Tj there is good generalization performance on held out samples also from the same task—i.e.,
xjN+1

, ..., xjN+m
∼ p(Tji). �at is, starting from the global parameters θ the meta-learning algo-

rithm produces a set of local parameters, φj tailored to Tj , through fast adaptation. �is approach
to gradient based meta-learning is known as Model Agonistic Meta-Learning (MAML) [6], and it’s
overall objective is de�ned as:

L(θ) = 1

J

∑
j∈J

[ ∑
m∈M

− log p(xjN+m
|θ − α∇θ

1

N

∑
n∈N
− log p(xjn |θ))

]
. (2)
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Here, the local parameters are φj = θ − α∇θ 1
N

∑
n∈N − log p(xjn |θ) with α as the learning rate

for the speci�c task.

3 Method

We consider the problem of link prediction in a sparse graph drawn from a distribution of graphs
as the se�ing for our meta learning problem.

Meta-Graph. We introduce Meta-Graph (Figure 1), a novel meta-learning algorithm that uses an
encoding of the current graph as means to modulate the parameters of the recognition network in
a VGAE model. Speci�cally, Meta-Graph learns global and local parameters, θ, φ, that are based
on the VGAE model comprising of k hidden GCN [8] layers as the recognition network and a
dot-product decoder as the generative model. To exploit the shared structural and node feature
similarities between graphs, we also de�ne a Graph Signature (GS) function, ψ, which learns a
graph embedding γ and a bias β for each GCN layer in the recognition network given a sampled
graph, Gi ∼ p(G). Intuitively, the role of ψ is to encode the structural properties within a graph
across the distribution over graphs given a new Gi ∼ p(G) it can thus inform the weight updates for
even faster adaption. Similar to the recognition network we de�ne ψ using k-GCN layers followed
by a small MLP with a non-linear activation such that the output is bounded —i.e. γ, β ∈ [−1, 1].
Inspired by [5], we use feature-wise linear modulation [16] for each GCN layer in the recognition
network as follows:

βk, γk, = ψ(G)

hk =
∑
i→j∈E

(γk �Whk−1 + βk).

To enforce the GS to learn useful modulating parameters γ and β over the entire distribution, we
update ψ, only in the outer loop. During meta-training, we use ψ as a deterministic encoding
for G, and update local parameters φ with a few steps of gradient descent, while ensuring that
gradients are never used to update ψ itself. De�ning ψ in the outer loop allows us to compute
parameters that in�uence the parameters of the recognition prior to a single gradient step, enabling
faster adaptation than vanilla meta-learning which does not explicitly leverage structural and other
features of previously observed graphs. Fig. 1 Le� shows the architecture of Meta-Graph while Fig.
1 Right gives the exact algorithm used to update global and local parameters, θ, φ and the graph
signature function ψ.

Connection to MAML. �e Meta-Graph algorithm has important di�erences from MAML and
other conventional meta-learning domains. Meta-Graph assumes a distribution over graphs rather
than speci�c tasks. Secondly, examples in our dataset are edges in a sparse graph which can be non-
i.i.d. unlike in supervised classi�cation or regression. �e most signi�cant di�erence, is however
the addition of the Graph Signature function and its explicit role in in�uencing the local parameters
during meta-training. To be more precise, new test graphs which are similar to training graphs, for
the purposes of meta-learning, start at a signi�cantly be�er initialization point due to feature-wise
modulation of the recognition network parameters.

4 Experiments

Datasets. We demonstrate the ability of Meta-Graph on the Protein Protein Interaction (PPI) [18]
and FIRSTMM DB [11] datasets taken from the biological and robotics domains respectively. �e
PPI datasets consists of human protein-protein interaction networks corresponding to di�erent
tissues, from which 20 graphs are taken as training, 2 for validation and another 2 for testing.
�e FIRSTMM DB contains a set of graphs corresponding to 3d point cloud data and categories
of various household objects for semantic and graph-based object category prediction and has 33
training graphs and 4 graph each for validation and testing. For both datasets, we perform link
prediction by training on a subset (i.e., a percentage) of the edges and then a�empting to predict
the unseen edges (with 20% of the held-out edges used for validation).

Results. We evaluate Meta-Graph against multiple baselines for both �nal convergence as well
as fast adaptation using the AUC classi�cation accuracy for predicting real vs. randomly sampled
negative edges. Table 1 shows convergence results for both datasets for di�erent training edge
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PPI FirstMM DB

% Edges 10% 20% 30% 10% 20% 30%
Meta-Graph 0.795/0.813 0.833/0.839 0.845/0.846 0.782/0.715 0.786/0.718 0.783/0.712
MAML 0.770/0.785 0.815/0.825 0.828/0.834 0.776/0.712 0.782/0.713 0.793/0.733
Random 0.578/0.530 0.651/0.590 0.697/0.639 0.742/0.677 0.732/0.665 0.720/0.649
No Fintune 0.738/0.757 0.786/0.803 0.801/0.820 0.740/0.692 0.710/0.646 0.734/0.687
Finetune 0.752/0.759 0.8010/0.817 0.821/0.835 0.752/0.701 0.735/0.690 0.723/0.672
Adamic 0.540/0.540 0.623/0.622 0.697/0.700 0.504/0.504 0.519/0.519 0.544/0.543
Deepwalk 0.664/0.641 0.673/0.669 0.694/0.701 0.487/0.492 0.473/0.525 0.510/0.604

Table 1: Convergence AUC/AP results with various fractions of training edges

PPI FirstMM DB

% Edges 10% 20% 30% 10% 20% 30%
Meta-Graph 0.795/0.812 0.824/0.832 0.847/0.849 0.773/0.713 0.767/0.715 0.737/0.667
MAML 0.728/0.710 0.809/0.816 0.804/0.806 0.763/0.702 0.750/0.672 0.624/ 0.590
No Fintune 0.600/0.547 0.697/0.668 0.717/0.671 0.708/0.644 0.680/0.603 0.709/0.643
Finetune 0.582/0.546 0.727/0.733 0.774/0.788 0.705/0.655 0.695/0.646 0.704/0.633

Table 2: 5-gradient update AUC/AP results with various fractions of training edges

splits. Speci�cally, when testing for model convergence we adapt to new test graphs until learn-
ing converges as determined by performance on the validation set of edges. In addition, we also
report in Table 2 results in the fast adaptation se�ing where each approach has 5-gradient steps
to quickly adapt to the new graph. We compare Meta-Graph against a number of classical link
prediction baselines: Adamic-Adar [1], DeepWalk [12] and a GCN model with random weights to
understand the natural expressive power of the base VGAE model. We also report a NoFinetuning
and Finetuning baselines. �e former trains a single set of VGAE parameters for each graph, as a
result, each model is independent of the other graphs in the dataset. For �netuning the graphs are
observed in a sequential order and the weights are �netuned starting from the previous graph in
the sequence. Finally, we also compare with a meta-learning baseline which does not include GS,
which we call MAML as there are both global and local parameters. For fair comparison we tune all
learning rates and meta-learning speci�c hyperparameters like the number of local updates using
Bayesian Optimization with �ompson sampling on a validation set of graphs.

As shown in Table 1 we �nd that Meta-Graph outperforms all baselines for PPI in terms of �nal
convergence by a signi�cant margin for all training edge splits. A similar result is observed in Table
2 for FIRSTMM DB for 10% and 20% of edges, while for 30%MAML (which itself is a meta-learning
algorithm) marginally outperforms Meta-Graph. As meta-learning approaches are purpose built
for fast adaptation we �nd that both Meta-Graph and MAML achieve large performance gains from
just 5 gradient updates compared to all other baseline on both PPI and FIRSTMM DB. Furthermore,
the addition of GS in Meta-Graph further boosts performance by learning a be�er initialization
point relative to MAML and is superior in all se�ings.

5 Conclusion

We consider the problem of meta-learning where each task is link prediction in a sparse graph
drawn from a distribution over graphs. We introduce a new meta-learning algorithm for sparse
graph data that learns an additional graph signature function that modulates the parameters of
a recognition network during fast adaptation. Empirically, we observe signi�cant gains on the
PPI and FIRSTMM DB datasets when compared to conventional link prediction approaches such
as DeepWalk and Adamic-Adar. A similar result is also observed on one popular approach to
gradient based meta-learning in MAML for both �nal convergence but critically fast adaptation in
few gradient steps. While, the GS uses an element-wise modulation of the GCN weights it is not the
only possible choice. Extending Meta-Graph with di�erent mechanisms for parameter modulation
and gaining deeper insight over the learned parameters in GS is a fruitful direction for future work.
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