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Abstract

Many irregular domains such as social networks, financial transactions, neuron
connections, and natural language structures are represented as graphs. A variety
of graph neural networks (GNNs) have been successfully applied for representa-
tion learning and prediction on such graphs. However, in many of the applica-
tions, the underlying graph changes over time and existing GNNs are inadequate
for handling such time varying graphs. In this paper we propose a novel technique
for learning embeddings of time varying graphs based on a tensor framework. The
method extends the popular graph convolutional network (GCN) for learning rep-
resentations of time varying graphs using the recently proposed tensor M-product
technique. Numerical experiments on four real datasets demonstrate that our pro-
posed method outperforms a baseline method when used for edge classification.

1 Introduction

Representation and learning from time varying, or dynamic, graphs have numerous applications.
Examples include analyzing social networks [1], predicting collaboration in citation networks [15],
detecting fraud and crime in financial networks [21, 25], traffic control [29], and understanding
neuronal activities in the brain [5]. Recently, graph neural networks (GNNs) such as the graph con-
volutional network (GCN) [11] have become popular tools for exploring graph structured data [26].
However, most GNNs assume the graph to be static, and efficient GNN methods that handle time
varying graphs are lacking. In this paper, we propose a novel tensor variant of GCN for learning
embeddings of time varying graphs which we call TensorGCN. It captures correlation over time by
leveraging the tensor M-product framework [3, 8, 9]. GCN was inspired by graph filtering theory,
and we can establish a similar tensor based theory for our TensorGCN. Elements of our method can
also be used as a preprocessing step for other dynamic graph methods.

Prediction on Time Varying Graphs: By time varying graph, we mean a sequence of graphs
(V,A(t),X(t)), t ∈ {1, 2, . . . , T}, with a fixed set V ofN nodes, adjacency matrices A(t) ∈ RN×N ,
and graph feature matrices X(t) ∈ RN×F where X

(t)
n: ∈ RF is the feature vector consisting of F

features associated with node n at time t. The graphs can be weighted, and directed or undirected.
They can also have additional properties like (time varying) node and edge classes, which would be
stored in a separate structure. Suppose we only observe the first T ′ < T graphs in the sequence. The
goal of our method is to use these observations to predict some property of the remaining T − T ′
graphs. In this paper, we consider the problem of edge classification. Other potential applications
are node classification and edge/link prediction.
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The Tensor M-Product Framework: This framework relies on a new definition of the product of
two tensors, called the M-product [3, 8–10]. A distinguishing feature of this framework is that the
M-product of two three-dimensional tensors is also three-dimensional, which is not the case for e.g.
tensor contractions [2].

Definition 1.1 (M-transform). Let M ∈ RT×T be a mixing matrix. The M-transform of a tensor
A ∈ RI×J×T is denoted by A×3 M ∈ RI×J×T and defined elementwise as

(A×3 M)ijt =

T∑
k=1

MtkAijk.

We say that A ×3 M is in the transformed space. Note that if M is invertible, then (A ×3 M) ×3

M−1 = A. Consequently, A×3 M
−1 is the inverse M-transform of A.

Definition 1.2 (Facewise product). Let A ∈ RI×J×T and B ∈ RJ×K×T be two tensors. The
facewise product, denoted by A4B ∈ RI×K×T , is defined facewise as (A4B)::t

def
= A::tB::t.

Definition 1.3 (M-product). Let A ∈ RI×J×T and B ∈ RJ×K×T be two tensors, and let M ∈
RT×T be an invertible matrix. The M-product, denoted by A ?B ∈ RI×K×T , is defined as

A ?B
def
= ((A×3 M)4(B×3 M))×3 M

−1.

In the original formulation of the M-product, M was chosen to be the Discrete Fourier Transform
(DFT) matrix, which allows efficient computation using the Fast Fourier Transform (FFT) [3, 9, 10].
The framework was later extended for arbitrary invertible matrices (e.g. discrete cosine and wavelet
transforms) [8], and for tensors of dimension greater than three [19]. The M-product framework al-
lows one to elegantly generalize many classical numerical methods from linear algebra, and has been
applied e.g. in neural networks [20], imaging [10, 19, 22], facial recognition [7], and tensor com-
pletion and denoising [16, 27, 28]. The M-product framework helps us define eigendecompositions
and functions of tensors (called t-eig and t-function), see [9, 17] for details.

Other Related Work: There are many works that deal with graph neural networks when the graph
and features are fixed/static; see e.g. [4, 6, 11] for GCNs, as well as the review papers [26, 30] and
references therein. These methods cannot be directly applied to the dynamic setting we consider.

Manessi et al. [18] appear to be one of the first to apply GNNs to dynamic graphs. Their approach
uses Long Short-Term Memory networks (LSTMs) along with GNNs in order to handle time vari-
ations. Seo et al. [23] present the Graph Convolutional Recurrent Network for graphs with time
varying features. However, this method assumes that the edges are fixed over time, and is not appli-
cable in our setting. Wang et al. [24] present a method called EdgeConv, which is a neural network
(NN) approach that applies convolution operations on static graphs in a dynamic fashion. Their ap-
proach is not applicable when the graph itself is dynamic. Zhao et al. [29] develop a temporal GCN
method called T-GCN, which they apply for traffic prediction. Their method assumes the graph
remains fixed over time. Pareja et al. [21] present a variant of GCN where Gated Recurrent Units
(GRUs) are coupled with a GCN to handle dynamic graphs. This paper is currently state-of-the-art.
However, their approach is based on a heuristic RNN/GRU mechanism, which is not theoretically
viable, and does not harness a tensor algebraic framework to incorporate time varying information.
Newman et al. [20] present a tensor NN which utilizes the M-product tensor framework. Their ap-
proach can be applied to image and other high-dimensional data that lie on regular grids, and differs
from ours since we consider data on time varying graphs.

2 Tensor Dynamic Graph Embedding

Our approach is inspired by the first order GCN in [11] for static graphs. For a graph with adjacency
matrix A and feature matrix X, a layer in that GCN takes the form Y = σ(ÃXW), where Ã

def
=

D̃−1/2(A + I)D̃−1/2, D̃ is diagonal with D̃ii = 1 +
∑

j Aij , I is the matrix identity, W is a
matrix to be learned when training the NN, and σ is an activation function. Our goal is to convert
this model to a tensor model by utilizing the M-product framework. To this end, we first introduce a
tensor activation function σ̂ which operates in the transformed space.

2



Definition 2.1. Let A ∈ RI×J×T be a tensor and σ an elementwise activation function. We define
the activation function σ̂ as σ̂(A)

def
= σ(A×3 M)×3 M

−1.

We can now define our proposed dynamic graph embedding. Let A ∈ RN×N×T be a tensor with
frontal slices A::t = Ã(t), where Ã(t) is the normalization of A(t). Moreover, let X ∈ RN×F×T

be a tensor with frontal slices X::t = X(t). Finally, let W ∈ RF×F ′×T be a weight tensor. We
define our dynamic graph embedding as Y = A ?X ?W ∈ RN×F ′×T . This computation can also
be repeated in multiple layers. For example, a 2-layer formulation would be of the form

Y = A ? σ̂(A ?X ?W(0)) ?W(1).

One important consideration is how to choose the matrix M which defines the M-product. For time
varying graphs, we choose M to be lower triangular and banded so that the frontal slice (A×3M)::t
will be a linear combination of the adjacency matrices A::max(1,t−b+1), . . . ,A::t, where we refer to
b as the “bandwidth” of M. Specifically, the entries in M on the diagonal and first b−1 subdiagonals
are set to 1, and all other entries are set to zero. M is then normalized so that each row has unit
`1-norm. This choice ensures that each frontal slice (A ×3 M)::t only contains information from
current and past graphs that are close temporally. Another possibility is to treat M as a parameter
matrix to be learned from the data. The M-product framework lets us define a tensor graph Fourier
transform. This helps us establish the relation between our TensorGCN and graph filtering, similar
to the original GCN in [4] (we omit details here due to the space constraint).

An embedding Y ∈ RN×F ′×T can now be used for various prediction tasks, like node and edge
classification and link prediction. In Section 3, we apply our method for edge classification by using
a model similar to that in [21]. Given an edge between nodes m and n at time t, the predictive
model is p(m,n, t) def

= softmax(U[(Y×3 M)m:t, (Y×3 M)n:t]
>) where (Y×3 M)m:t ∈ RF ′

and
(Y×3 M)n:t ∈ RF ′

are row vectors, U ∈ RC×2F ′
is a weight matrix, and C the number of classes.

3 Numerical Experiments

Here, we present results for edge classification on four datasets1: The Bitcoin Alpha and OTC
transaction datasets [12], the Reddit body hyperlink dataset [13], and a chess results dataset [14].
The bitcoin datasets consist of transaction histories for users on two different platforms. Each node is
a user, and each directed edge indicates a transaction and is labeled with an integer between−10 and
10 which indicates the senders trust for the receiver. We convert these labels to two classes: positive
(trustworthy) and negative (untrustworthy). The Reddit dataset is build from hyperlinks from one
subreddit to another. Each node represents a subreddit, and each directed edge is an interaction
which is labeled with −1 for a hostile interaction or +1 for a friendly interaction. We only consider
those subreddits which have a total of 20 interactions or more. In the chess dataset, each node is a
player, and each directed edge represents a match with the source node being the white player and
the target node being the black player. Each edge is labeled −1 for a black victory, 0 for a draw, and
+1 for a white victory. For each node-time pair (n, t) in these graphs, we compute the number of
outgoing and incoming edges and use these two numbers as features.

The bitcoin and Reddit datasets are heavily skewed, with about 90% of edges labeled positively,
and the remaining labeled negatively. Since the negative instances are more interesting to identify
(e.g. to prevent financial fraud or online hostility), we use the F1 score to evaluate the experiments
on these datasets, treating the negative edges as the ones we want to identify. The classes are more
well-balanced in the chess dataset, so we use accuracy to evaluate those experiments.

The data is first temporally partitioned into T graphs (T is different for each dataset). Since the
corresponding adjacency matrices are very sparse for these datasets, we apply the same technique as
in [21] and add the entries of each adjacency matrix A(t) to the following l − 1 adjacency matrices
A(t+1), . . . ,A(t+l−1), where we refer to l as the “edge life.” The adjacency tensor A is then con-
structed as described in Section 2. Note that this only affects A, and that the added edges are not
treated as real edges in the classification problem. After this, the T frontal slices of A are divided
into Strain training slices, Sval validation slices, and Stest testing slices, which come sequentially after
each other; see Figure 1 and Table 1.

1We provide links to these datasets in Section A of the supplementary material.
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Figure 1: Partitioning of A into training, validation and testing data.

Table 1: Partitioning and results for each dataset. * and † indicate if the results are given in terms of
F1 score or accuracy, respectively; higher is better in both cases. “Symmetric” and “Asymmetric”
indicate if the adjacency matrices were symmetrized or not.

Partitioning Symmetric Asymmetric

Dataset Strain Sval Stest Proposal Baseline Proposal Baseline

Bitcoin OTC* 95 20 20 0.3103 0.0769 0.3529 0.3317
Bitcoin Alpha* 95 20 20 0.2207 0.1538 0.2331 0.2100
Reddit* 66 10 10 0.2071 0.1966 0.2028 0.1805
Chess† 80 10 10 0.4713 0.4369 0.4708 0.4342

We choose to use an embedding Ytrain = A::(1:Strain) ?X::(1:Strain) ?W for training. When computing
the embeddings for the validation and testing data, we still need Strain frontal slices of A, which
we get by using a sliding window of slices. This is illustrated in Figure 1, where the green, blue
and red blocks show the frontal slices used when computing the embeddings for the training, vali-
dation and testing data, respectively. The embeddings for the validation and testing data are Yval =
A::(Sval+1:Sval+Strain) ?X::(Sval+1:Sval+Strain) ?W and Ytest = A::(Sval+Stest+1:T ) ?X::(Sval+Stest+1:T ) ?W,
respectively. We choose to learn W directly in the transformed domain, where we assume that each
frontal slice is the same (i.e., that (W×3 M)::t = (W×3 M)::t′ for all t, t′) in order to reduce the
number of learnable parameters. For training, we use the cross entropy loss function:

loss = −
∑
t

∑
(m,n)∈Et

C∑
c=1

αcf(m,n, t)c log(p(m,n, t)c), (1)

where f(m,n, t) ∈ RC is a one-hot vector encoding the true class of the edge (m,n) at time t, and
α ∈ RC is a vector summing to 1 which contains the weight of each class. Since the bitcoin and
Reddit datasets are so skewed, we weigh the minority class more heavily in the loss function for
those datasets, and treat α as a hyperparameter; see Section B of the supplement for details.

The experiments are implemented in PyTorch with some preprocessing done in Matlab. Our code
will eventually be made available at https://github.com/OsmanMalik. In the experiments, we
use an edge life of l = 10 and bandwidth b = 20. Since the graphs in the considered datasets are
directed, we also investigate the impact of symmetrizing the adjacency matrices. Table 1 shows the
results for our method and a 1-layer version of the GCN baseline described in [21]. Our method
outperforms the baseline in all cases. For the bitcoin datasets, symmetrizing the adjacency matrices
decreases performance, especially for the baseline. For the Reddit and chess datasets, symmetriza-
tion does not have a significant impact on either method.

4 Conclusion

We have presented a novel approach for embedding of time varying, or dynamic, graphs which
leverages the tensor M-product framework. We used it for edge classification in experiments on
four real datasets, outperforming a baseline method in all cases. Future research directions include
developing the theoretical guarantees for the method, investigating optimal structure and learning
of the transform matrix M, designing deep networks utilizing our tensor embedding, and using the
method for other prediction tasks.
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Supplementary Material

A Links to Datasets

• The Bitcoin Alpha dataset is available at
https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html.

• The Bitcoin OTC dataset is available at
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html.

• The Reddit dataset is available at
https://snap.stanford.edu/data/soc-RedditHyperlinks.html.
Note that we use the dataset with hyperlinks in the body of the posts.

• The chess dataset is available at http://konect.uni-koblenz.de/networks/chess.

B Further Details on the Experiment Setup

When partitioning the data into T graphs, as described in Section 3, if there are multiple data points
corresponding to an edge (m,n) for a given time step t, we only add that edge once to the cor-
responding graph and set the label equal to the sum of the labels of the different data points. For
example, if bitcoin user m makes three transactions to user n during time step t with ratings 10, 2
and −1, then we add the edge (m,n) once to graph t with label 10 + 2− 1 = 11.

For training, we run gradient descent with a learning rate of 0.01 and momentum of 0.9 for 10,000
iterations. For each 100 iterations, we compute and store the performance of the model on the
validation data. As mentioned in Section 3, the weight vector α in the loss function (1) is treated
as a hyperparameter in the bitcoin and Reddit experiments. Since these datasets all have two edge
classes, let α0 and α1 be the weights of the minority (negative) class and majority (positive) class,
respectively. Since these parameters add to 1, we have α1 = 1 − α0. For both our proposed
TensorGCN and the baseline, we repeat the bitcoin and Reddit experiments once for each α0 ∈
{0.75, 0.76, . . . , 0.95}. For each model and dataset, we then find the best stored performance of
the model on the validation data across all α0 values. We then treat the corresponding model as the
trained model, and report its performance on the testing data in Table 1. The results for the chess
experiment are computed in the same way, but only for a single vector α = [1/3, 1/3, 1/3].
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