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1 Introduction

Objects of interest in the natural sciences can often be expressed as graphs with additional domain-
specific semantic constraints. Examples are structures of molecules in chemistry (element-dependent
bond limitations), quantum optical experiments in physics (component dependent connectivity)
or DNA and RNA in biology (nucleobase-dependent connectivity). These constraints pose major
challenges for generative models, as their violation leads to invalid results. A popular research
question is: How to design generative models for semantically constrained graphs? [1, 2].

Here we ask a related, but conceptually different question: How can we represent the information
encoded in a semantically constrained graph in a simple, robust, deterministic, domain-independent,
model-independent way? An answer to this question would allow us to use, as a direct input, our
representation into existing (and even future) models without any model-dependent adaptation, and
thus has the potential to be transferable across a spectrum of applications.

In this work, we present SELFIES (SELF-referencIng Embedded Strings), a sequence-based represen-
tation of semantically constrained graphs that aims to fulfill these criteria. At the heart of SELFIES
is a formal Chomsky type-2 grammar [3], which is augmented with two self-referencing, recursive
functions to ensure the generation of syntactically and semantically valid graphs.

We show that SELFIES can be used as a direct input to deep learning models, such as variational
autoencoders (VAEs) and generative adversarial networks (GANs), in the domain of chemistry and
quantum optics. In all experiments tested, 100% of the obtained SELFIES were valid – even for
entirely random sequences.

1.1 Related Work

The application of VAEs in chemistry has seen a rapid evolution of robustness. In the first application
of VAEs in chemistry [4], chemical compounds were represented with SMILES [5]. Even though
they are fragile, i.e. small variations often lead to invalid molecules, SMILES are still one of the
standard representations used today. DeepSMILES [6] is an effort to extend SMILES by introducing
a more robust encoding of rings and branches of molecules.
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To improve the robustness of molecular representations, parse trees have been employed to formally
derive SMILES strings, denoted as GrammarVAE [7]. GrammarVAE uses the well-defined grammar
of SMILES which has been defined to construct all possible graph structures of chemical elements –
a class which contains much more than just all valid molecules. We use SMILES, DeepSMILES and
the deterministic rewriting system of GrammarVAE as our baselines.

Further improvements on graphs in chemistry using VAEs have been achieved in [8, 9]. A general
semantically constrained graphs combined with regularization demonstrated high validity of the
decoded molecules from a VAE [1]. Other advances involve, for example, [10, 11, 2, 12]. Their
objective was to adapt the generative models itself to increase validity of the generated graphs,
especially in the settings of VAEs. Our motivation is different, we propose a new valid representation
which does not require adaptation of deep learning models.

2 Robust representation of semantically constrained graphs

We take advantage of a formal grammar to derive words, which will represent semantically valid
graphs. A formal grammar is a tuple G(V,Σ, R, S), where v ∈ V are non-terminal symbols that are
replaced using rules, r ∈ R, into non-terminal or terminal symbols t ∈ Σ. S is a start symbol. When
the resulting string only consists of terminal symbols, the derivation of a new word is completed
[13]. The SELFIES representation is a Chomsky type-2, context-free grammar with self-referencing
functions for valid generation of branches in graphs. The rule system is shown in Table 1.

Vertices Branches Rings︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
A0 A1 An An+1 An+m An+m+1 An+m+p

X0 → ε | t0,1 Xh0,1 . . . | t0,n Xhr,0 | B(N, Xi0,1 ) Xj0,1 . . . |B(N, Xi0,m ) Xj0,m | R(N) Xk0,1 . . . |R(N) Xk0,p

X1 → ε | t1,1 Xh1,1 . . . | t1,n Xhr,1 | B(N, Xi1,1 ) Xj1,1 . . . |B(N, Xi1,m ) Xj1,m | R(N) Xk1,1 . . . |R(N) Xk1,p

. . .
Xr → ε | tr,1 Xhr,1 . . . | tr,n Xhr,n | B(N, Xir,1 ) Xjr,1 . . . |B(N, Xir,m ) Xjr,m | R(N) Xkr,1 . . . |R(N) Xkr,p

N → 0 | 1 . . . | n | n+1 . . . | n+m | n+m+1 . . . |n+m+p

Table 1: Grammar of SELFIES, with recursion and S→X0.

In SELFIES, V = {X0, . . . ,Xr,N} are non-terminal symbols or states. The states Xi restrict the
subsequent edge to a maximal multiplicity of i; the maximal edge multiplicity of the generated
graphs is r. The symbol N represents a numerical value, which acts as argument for the two self-
referencing functions. Σ = {t0,1, . . . , tr,n} are terminal symbols. The derivation rule set R has
exactly (n + m + p + 1) × (r + 2) elements, corresponding to n rules for vertex production, m
rules for producing branches, p rules for rings and r non-terminal symbols in V . The subscripts
ha,b, ia,b, ja,b and ka,b have values from 1 to r, and encode the actual domain-specific constraints.
The semantic and syntactical constraints are encoded into the rule vectors, which guarantees strong
robustness. There are n+m+ p+ 1 rule vectors Ai, each with a dimension (r + 2).

Self-referencing functions for syntactic validity – In order to account for syntactic validity of
the graph, we augment the context-free grammar with branching functions and ring functions.
B(N, Xi) is the branching function, that recursively starts another grammar derivation with subse-

Figure 1: Derivation rules of SELFIES for molecules in the QM9 dataset.
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Figure 2: Derivation of a molecule with a recursive branch generation in step 4.

quent N SELFIES symbols in state Xi. After the full derivation of a new word (which is a graph), the
branch function returns the graph, and connects it to the current vertex. The ring function R(N) es-
tablishes edges between the current vertex and the (N+ 1)-th last derived vertex. Both the branching
and ring functions have access to the SELFIES string and the derived string, thus are self-referencing.

Rule vectors for semantic validity – To incorporate semantic validity, we denote Ai as the i-th
vector of rules, with dimension dAi = |V | = r + 2. The conceptual idea is to interpret a symbol
of a SELFIES string, si ∈ {0, . . . , n+m+ p} as an index of a rule vector, Asi . In the derivation of
a symbol, the rule vector is defined by the symbol of the SELFIES string (external state) while the
specific rule is chosen by the non-terminal symbol (internal state). Thereby, we can encode semantic
information into the rule vector Ai, which is memorized by the internal state during derivation.

Algorithmic derivation of grammar from data, and validity guarantees – Domain-specific gram-
mars can be derived algorithmically directly from data, without any domain knowledge. Let T
be the set of different types of vertices (such as C, O, N, . . . in chemistry). We use a dataset to
get the types of vertices Ti, and their maximal degrees Di (Di = maxdeg(Ti) – in chemistry, the
DO = maxdeg(O) = 2, DC = maxdeg(C) = 4). Let M = maxi maxdeg(Ti) be the maximal
degree of the dataset. Starting from Table 1 (I) we identify the rule vectors Ai, (II) define the
non-terminal symbols Xj , and (III) define the rules R.

I A1 . . .An (vertices rules) consist of Ti with a potential multiedge connection γ up to Di (in
chemistry, DO=2, thus we have two rule vectors for O, one with single edge γ = 1, one with
double connection γ = 2). An+1 . . .An+m represent branch rules. A branch forms connections
to two vertices, thus we have maximally (M − 1) branch rules, (combinations of (M − l, l)
represent the maximal connectivity to the two branches). An+m+1 . . .An+m+p denote ring
rules, in a generic case p = 1 is sufficient.

II non-terminals X1 . . . Xr, with r = M , constrain the number of edges to connect two vertices.

III Rule ri,j for Ai ∈ {A1 . . .An} and Xj ∈ {X1 . . .Xr} can consist of a terminal and non-
terminal symbol. The terminal consists of a Ti (given by Ai) and a edge-multiplicity µ =
min(j, γ). The corresponding nonterminal symbol is XM−µ (if M − µ = 0, no non-terminal
will be added). Note that constraints are satisfied due to the min operation in µ. Rules in state
Xj for rings are R(N)Xj−1, and for branches are B(N,Xi)Xj−i.

The edge-multiplicity µ = min(j, γ) is responsible for the semantic constraint of local degrees
being satisfied. This is the most immediate constraint in many applications for physical sciences,
which allows for 100% validity. More complex, non-local constraints could be implemented by more
complex grammars, such as explicit context-sensitive type-1 grammars.

3 Application on chemical graphs

A concrete alphabet for the application in chemistry is in Figure 1, which we use to represent
molecules in the benchmark dataset QM9 [14, 15]. The derivation of a molecular graph in Figure 2.

Coverage of the chemical space – Table 1 covers a large range of organic molecules, and it is easy
to extend the grammar (for example, using the algorithm in section 2). We added ring and branch
function which take more than one sequence for deriving a number N (enabling rings and branches
of up to N = 8.000). To increase the coverage further, we have added one additional generic rule
vector, which has no semantic restrictions (i.e. Di →∞), but satisfies syntactic degrees. Unspecified
vertices will be derived in this way. Thereby, we encoded and decoded all 72 million molecules
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bitflip random string VAE GAN
Validity Validity Length Validity Reconstruction Diversity Diversity

SMILES 18.1% 2.8% 1.4 71.9% 66.2% 5.9% 18.5%
DeepSMILES 38.2% 3.0% 1.4 81.4% 79.8% 67.3% -
GrammarVAE 9.5% 17.2% 1.0 34.0% 84.0% 4.0% -

SELFIES 100% 100% 9.4 100% 98.2% 82.9% 78.9%

Table 2: Results for bitflip (starting from valid graph), random sequence, VAE and GAN

from PubChem (the most complete collection of synthesized molecules) with ≤ 500 SMILES chars,
demonstrating coverage of the space of chemical interest.

Validity after mutations, and random strings – In the first experiment, we test random mutations
(starting from a valid molecule in QM9) and entirely random strings. We evaluate the resulting
validity using RDKit [16]. Results are shown in Table 2. While the best competing representation
has less than 40% validity and less than 20% respectively, SELFIES always produce valid molecules.
Furthermore, the resulting valid molecules from random strings are significantly larger (in SMILES
chars) than for other representations.

Application in a Variational Autoencoder – We demonstrate the robustness and practicality of
SELFIES for molecule generation in VAE. We evaluate the performance of each representation based
on the reconstruction quality (per-character matching between the input and output), validity (fraction
of valid molecules), and diversity (fraction of valid molecules with different SMILES strings). The
encoder is a fully connected NN with three layers, the decoder is a RNN. The hyperparameters for
each representations are Bayesian optimized [17, 18]. We show in Table 2 that SELFIES has 100%
validity, and the highest diversity and reconstruction quality.

Figure 3: Diversity in VAE and GAN

For an extended test, we add a third neural network
(which is connected to the latent space) for a re-
gression task. We train it in tandem with the VAE
to predict graph properties (partition coefficient
logP [19]). The prediction quality of all representa-
tions is similar (r2=0.97, except of GrammarVAE
which has r2=0.92). For inverse design, apart of
high prediction quality, a diverse latent space is
essential. Thus we investigate the density of valid
diverse molecules by sampling latent space points
(within certain σ around the center, stopping after 20 samples didn’t produce new instances). We
show in Fig. 3a that SELFIES VAE contains 100 times more valid diverse molecules than others.

Application in a Generative Adversarial Network – For chemistry (QM9), SELFIES outperform
SMILES in GAN, see Fig. 3b. We train GANs (fully connected, with 200 different hyperparameter
settings) to generate diverse molecules. Sampling 10k times, SELFIES produced 7889 different
valid molecules (SMILES only 1855). Diversity is the critical metric of particular interest in
molecular design. Also in this regard, SELFIES outperform all other available sequence-based graph
representations, while also showing model-independence.

4 Conclusion and Future Work

SELFIES is a robust, general-purpose representation of graphs with domain-specific constraints. It
enables the application of new deep learning methods in the natural sciences, such as chemistry,
without the necessity to adapt models with domain-specific constraints. It is straight forward to
apply SELFIES to other domains by deriving the grammar in section 3.3 algorithmically. We have
applied SELFIES also in quantum optics, where we find – similar to chemistry – 100% validity of
the generated quantum optics experimetal graphs [20, 21], and outperforming native representations
which have similar difficulties as SMILES in chemistry (in particular in cases of cavities).

We conclude by stressing that a 100% valid latent space is essential for model interpretation [22, 23,
24], in particular for interpreting the internal representations [25] in a scientific context [26].

4



Acknowledgments

The authors thank Theophile Gaudin for useful discussions. A. A.-G. acknowledges generous support
from the Canada 150 Research Chair Program, Tata Steel, Anders G. Froseth, and the Office of
Naval Research. We acknowledge supercomputing support from SciNet. M.K. acknowledges support
from the Austrian Science Fund (FWF) through the Erwin Schrödinger fellowship No. J4309. F.H.
acknowledges support from the Herchel Smith Graduate Fellowship and the Jacques-Emile Dubois
Student Dissertation Fellowship. P.F. has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement No 795206.

References
[1] T. Ma, J. Chen and C. Xiao, Constrained generation of semantically valid graphs via regularizing

variational autoencoders. Advances in Neural Information Processing Systems 7113–7124 (2018).
[2] Y. Li, O. Vinyals, C. Dyer, R. Pascanu and P. Battaglia, Learning deep generative models of

graphs. arXiv:1803.03324 (2018).
[3] N. Chomsky, Three models for the description of language. IRE Transactions on information

theory 2, 113–124 (1956).
[4] R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-Lengeling,

D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams and A. Aspuru-Guzik, Automatic
chemical design using a data-driven continuous representation of molecules. ACS central science
4, 268–276 (2018).

[5] D. Weininger, SMILES, a chemical language and information system. 1. Introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences 28, 31–36
(1988).

[6] N. O’Boyle and A. Dalke, DeepSMILES: An Adaptation of SMILES for Use in machine-learing
chemical structures. ChemRxiv (2018).

[7] M.J. Kusner, B. Paige and J.M. Hernández-Lobato, Grammar variational autoencoder. Proceed-
ings of the 34th International Conference on Machine Learning-Volume 70 1945–1954 (2017).

[8] H. Dai, Y. Tian, B. Dai, S. Skiena and L. Song, Syntax-directed variational autoencoder for
structured data. arXiv:1802.08786 (2018).

[9] W. Jin, R. Barzilay and T. Jaakkola, Junction tree variational autoencoder for molecular graph
generation. arXiv:1802.04364 (2018).

[10] M. Simonovsky and N. Komodakis, Graphvae: Towards generation of small graphs using
variational autoencoders. International Conference on Artificial Neural Networks 412–422 (2018).

[11] Q. Liu, M. Allamanis, M. Brockschmidt and A. Gaunt, Constrained graph variational autoen-
coders for molecule design. Advances in Neural Information Processing Systems 7795–7804
(2018).

[12] B. Samanta, A. De, G. Jana, P.K. Chattaraj, N. Ganguly and M. Gomez-Rodriguez, NeVAE: A
Deep Generative Model for Molecular Graphs. arXiv:1802.05283 (2018).

[13] J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation (3rd Edition). (2006).

[14] R. Ramakrishnan, P.O. Dral, M. Rupp and O.A. Von Lilienfeld, Quantum chemistry structures
and properties of 134 kilo molecules. Scientific data 1, 140022 (2014).

[15] L. Ruddigkeit, R. Van Deursen, L.C. Blum and J.L. Reymond, Enumeration of 166 billion or-
ganic small molecules in the chemical universe database GDB-17. Journal of chemical information
and modeling 52, 2864–2875 (2012).

[16] G. Landrum and others, RDKit: Open-source cheminformatics. Journal of chemical information
and modeling (2006).

[17] T.G. authors, GPyOpt: A Bayesian Optimization framework in python. http: // github.
com/ SheffieldML/ GPyOpt (2016).

[18] F. Häse, L.M. Roch and A. Aspuru-Guzik, Chimera: enabling hierarchy based multi-objective
optimization for self-driving laboratories. Chemical science 9, 7642–7655 (2018).

5

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt


[19] S.A. Wildman and G.M. Crippen, Prediction of Physicochemical Parameters by Atomic Contri-
butions. Journal of chemical information and computer sciences 39, 868–873 (1999).

[20] M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz and A. Zeilinger, Automated search for new
quantum experiments. Physical review letters 116, 090405 (2016).

[21] A.A. Melnikov, H.P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger and H.J. Briegel,
Active learning machine learns to create new quantum experiments. Proceedings of the National
Academy of Sciences 115, 1221–1226 (2018).

[22] K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller and A. Tkatchenko, Quantum-chemical
insights from deep tensor neural networks. Nature communications 8, 13890 (2017).

[23] K. Preuer, G. Klambauer, F. Rippmann, S. Hochreiter and T. Unterthiner, Interpretable Deep
Learning in Drug Discovery. arXiv:1903.02788 (2019).

[24] F. Häse, I.F. Galván, A. Aspuru-Guzik, R. Lindh and M. Vacher, How machine learning can
assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding
of chemistry. Chemical Science 10, 2298–2307 (2019).

[25] T.Q. Chen, X. Li, R.B. Grosse and D.K. Duvenaud, Isolating sources of disentanglement in
variational autoencoders. Advances in Neural Information Processing Systems 2610–2620 (2018).

[26] R. Iten, T. Metger, H. Wilming, L. Del Rio and R. Renner, Discovering physical concepts with
neural networks. arXiv:1807.10300 (2018).

6


	Introduction
	Related Work

	Robust representation of semantically constrained graphs
	Application on chemical graphs
	Conclusion and Future Work

