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Abstract

In this paper, we study the problem of node representation learning with graph
neural networks. Previous research has shown that graph neural networks (GNNs)
are an effective framework for representation learning of graphs. However, training
of deeper versions of GNNs becomes difficult. We show that using recurrent units to
capture the long-term dependency across layers can successfully identify important
information during recursive neighborhood expansion. In our experiments, we
show that this model class achieves state-of-the-art results on three benchmarks: the
Pubmed, Reddit, and PPI network datasets. Our in-depth analyses also demonstrate
that incorporating recurrent units is a simple yet effective method to prevent noisy
information in graphs, which enables a deeper graph neural network.

1 Introduction

Graphs are universal models of objects and their pairwise relationships. We can view many data
in the form of graphs, including social networks, protein interactions, paper citations. But unlike
sequence data or grid data, it is hard to express and exploit graph information in many machine
learning tasks. Recently substantial efforts have been made to learn expressive structure information
in graphs [21, 7, 28].

Graph neural networks are deep learning-based methods that operate on graphs. At each layer, GNNs
aggregate information from neighbourhoods and generate hidden states for each node. Because GNNs
do not require a fixed graph, we can easily apply them to new graphs on the fly, which is suitable for
the inductive setting. In recent proposed GNNs, there is a common drawback that training becomes
extremely difficult when models become deeper [12]. This is partially due to more layers would
also propagate noisy information from expanded neighborhood [12]. Though researchers try to use
residual connection [9] to overcome this issue [12, 30], the performance still gets worse with deeper
models. In this paper, we will show that using residual connection is not the best option for a deep
graph neural network. Rather, incorporating recurrent units in graph neural networks can effectively
capture the neighbourhood information while keeping local features unvarnished. In this work, we
present a deep graph neural network class named recurrent graph neural networks (RGNN). It uses
recurrent units to compress previous neighborhood information into hidden states and successfully
captures useful information during recursive neighborhood expansion.

In our experiments, we systematically evaluate the performance of RGNNs under supervised learning
setting as well as unsupervised setting. In our comparative evaluation, we show RGNNs can
consistently improve the performance of base GNN models. This model class achieves state-of-the-
art results on three commonly used benchmark datasets. We further compare this neural network class
with GNNs with residual connections. Experiments show that RGNNs have better learning capability
with the same number of layers and can effectively avoid noisy neighbourhood information.
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2 Recurrent Graph Neural Network

In a GNN model, each layer l can potentially capture information from neighbours with l-hops
distance. Such deep GNNs could propagate noisy information from the expanded neighbourhood.
An intuitive thought would be can we use recurrent units to model long-term dependency across
layers. If we take hidden states across layers as a sequence of observations, a recurrent unit with
good sequence modeling capability can ideally compress previous graph history into node states and
control how much information should be added to new hidden states.

With this intuition, we present the general recurrent graph neural network framework as follows:

H l+1 = RNN(GNN(H l, A; Θl), H l), l ≥ 0 (1)

H0 = RNN(WiX + bi, 0) (2)

where at each layer GNN(H l, A; Θl) generates new input for an RNN unit, and this RNN unit
decides how much information should be added into the next layer. The initial hidden state H0 is
generated by feeding node local features into the RNN unit. Wi, bi are a projection matrix and a bias
vector that maps input features into the dimension of hidden states.

An intuitive view of this RGNN model is that at layer 0 the hidden state h0 is only dependent on the
node’s local features, and at each layer l information from l-hop neighbourhood is compressed into
the hidden state by a recurrent unit.

Take a graph convolutional neural network [12] with long short-term memory [10] for example, it
updates node representations at each layer as follows:

X̂ l+1 = D̂−
1
2 ÂD̂−

1
2H lΘl I l+1 = σ(X l+1Wi +H lUi + [bi]N ) (3)

F l+1 = σ(X l+1Wf +H lUf + [bf ]N ) Ol+1 = σ(X l+1Wo +H lUo + [bo]N ) (4)

Ĉl+1 = tanh(X l+1Wc +H lUc + [bc]N ) Cl+1 = F l+1 ◦ Cl + I l+1 ◦ Ĉl+1 (5)

H l+1 = Ol+1 ◦ tanh(Cl+1) (6)

where [b]N represents stacking bias vector b ∈ RC N times and forms a bias matrix with dimension
RN×C . N is the number of nodes, C is the dimension of hidden states. Similar update rules can be
writen for other GNNs like graph attention neural networks (GAT) [30].

Note that for a large-scale graph with millions of nodes, training for the whole graph becomes
unfeasible because of the memory limitation. We use the sampling method proposed in GraphSAGE
[8] for batched training. At each training iteration, we first sample a small batch of nodes B0 and
then recursively expand Bl to Bl+1 by sampling Sl neighbourhood nodes of Bl. With a GNN of M
layers, we get a hierarchy of nodes: B0, B1, ..., BM . Representations of target nodes B0 are updated
by aggregating node states from the bottom layer BM to the upper layer B0.

Supervised Learning: Given a final representation hi for node vi, we first project hi into the
classification space and get an output oi = Wohi + bo where Wo ∈ R|Y |×C , bo ∈ R|Y | are a
projection matrix and a bias vector. |Y | is the number of target classes. In a multi-label classification
case, where labels are not mutually exclusive, the loss function for node vi is written as loss =
1
|Y |

∑|Y |
j=1[yij log(σ(oij)) + (1− yij)log(1− σ(oij))], where yij ∈ {0, 1} is the label for class j. In

a multi-class classification setting, where labels are mutually exclusive, the loss is the cross-entropy
loss after softmax, which is −yij log(

exp(oij)∑
j exp(oij)

).

Unsupervised Learning: Following previous work [28, 8], in the unsupervised setting, we learn
node representations by network modeling. Specifically, given a node vi with representation hi, the

goal is to optimize the probability of observing a context node vj as p(vj |vi) =
exp(hT

j hi)∑N
k=1 exp(hT

k hi)
,

where context node vj is generated by a random walk starting from node vi. We use negative sampling
[19] to approximate it and the objective becomes logσ(hTj hi) +

∑K
k=1Evk∼PN (v)[logσ(−hTk hi)].

The task turns into distinguishing the context node vj from K randomly sampled negative nodes. We
use uniform distribution PN (v) here. To further reduce memory consumption in our batched training,
nodes in one batch share the same set of negative nodes, which works well in practise.
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3 Experiments
3.1 Datasets
We adopt three commonly used benchmark datasets in our experiments – Pubmed [24], Reddit [8],
PPI [32]. A summary of these datasets and the experiments setup are shown in the Appendix A.

3.2 Baseline Comparisons
Results of comparative evaluation experiments are shown in Table 1. We evaluate GCN and GAT
with LSTM/GRU units. In the supervised setting, we compare RGNN based models with various
baselines — GCN, FastFCN [2], GAT, and GraphSAGE models. In the unsupervised setting, we use
GraphSAGEs as baselines.

Table 1: Comparative evaluation results for three datasets. We report micro-averaged F1 scores. “-”
signifies no results are published for the given setting.

Methods Pubmed Reddit PPI
Sup. F1 Unsup. F1 Sup. F1 Unsup. F1 Sup. F1

GCN 0.875 - 0.930 - 0.865
FastGCN 0.880 - 0.937 - 0.607

GAT 0.883 - 0.950 - 0.973
GraphSAGE-GCN 0.849 0.908 0.930 0.465 0.500
GraphSAGE-mean 0.888 0.897 0.950 0.486 0.598

RGCN-LSTM 0.908 0.919 0.963 0.791 0.992
RGCN-GRU 0.900 0.915 0.964 0.765 0.991
RGAT-LSTM 0.905 0.921 0.964 0.806 0.994
RGAT-GRU 0.902 0.913 0.964 0.791 0.994

Our results demonstrate that unifying recurrent units in modern GNN models can effectively improve
state-of-the-art performance across all three datasets. In the supervised learning setting, we are
able to improve GCNs by an absolute increase of 12.7% on PPI. For Reddit and Pubmed, 2% - 4%
improvement is achieved. Note that even Veličković et al. use residual connections for GAT on PPI
dataset, their result is still worse than RGAT with recurrent units.

In the unsupervised setting, we observe similar improvement on Reddit and PPI datasets. Noticeably,
RGNN based models perform much better on PPI than baselines under unsupervised learning. Our
best model RGAT-LSTM achieves over 30% improvement over GraphSAGE, which is even better than
some baseline models with supervised signals. Comparing RGCN-LSTM with GraphSAGE-GCN,
we can find the LSTM unit provides a significant gain on this task.

3.3 Model Depth Analysis

(a) GCN based models on PPI (b) GAT based models on PPI

Figure 1: Influence of model depth (number of layers) on performance. Markers denote averaged
micro-F1 scores on test dataset in 5 runs. Shaded areas represent standard deviations. We show
results for RGNN with RNN units, GNN with residual connections, and standard GNN models.

In this section, we investigate the influence of model depth (number of layers) on performance and
compare the effects of adding recurrent units and residual connection. In this experiment, we use the
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same hyperparameter setting across all the base models. We run each method 5 times with various
depths on PPI and Pubmed under supervised setting. Because of the GPU memory limitation, we
change the dimension of hidden states from 1024 to 512 on PPI in these experiments.

As shown in Figure 1a and 1b, on PPI dataset, GNNs with recurrent units can be easily extended to
deeper models and perform noticeably better than GNNs with residual connections (GNN-Res). A
vanilla GCN degenerates quickly when the depth increases to 3 or higher. The GAT is better than the
GCN, but it still fails when its depth goes beyond 6. Using residual connections does help GAT and
GCN models to generalize to deeper models. However, performances of GNN models with residual
connections are still worse than GNNs with recurrent units. RGCN models and RGAT models can
quickly reach and maintain their optimal performances on PPI dataset. Although the difference
between GAT-Res and RGAT models becomes less when depth gets larger, a 10-layer GAT-Res is
still worse than 10-layer RGAT-LSTM/RGAT-GRU (0.985 versus 0.993/0.993). A similar analysis
on Pubmed dataset is shown in the Appendix B.

3.4 Perturbation Analysis
For many real-world problems, we do not have access to accurate information about the graph. Many
times, there is noisy information in the graph structure and nodes’ local features. In this section, we
perform a perturbation study where we compare 3-layer RGNN models against 3-layer GNNs with
imperfect information on PPI dataset under supervised learning.

In the first noisy graph scenario, we cut an edge with probability p and connect two randomly selected
nodes. When p equals to 1, the reconstructed graph turns to be a random graph with the same graph
density. We measure the performance of RGNNs, GNNs with residual connections, and GNNs under
various probability p. In Figure 2a, we observe that the GAT models with LSTM and GRU units are
more robust to noisy graph information, which shows that gates in these two RNN units are helpful
for capturing important information and avoiding noisy graph information. RGNNs with LSTM units
generally work better than RGNN with GRU units in this case.

(a) GAT based models with noisy graphs (b) GAT based models with noisy features

Figure 2: Perturbation analysis. Markers denote averaged micro-F1 scores on test graphs of PPI in 5
runs. Shaded areas represent standard deviations. We show results for RGNN with LSTM and GRU
units, GNN with residual connections, and standard GNN models.

In the second noisy feature scenario, for each node, we randomly mutate its local features with
probability p, where we replace its features with Gaussian noises draw from N(0, 1). As shown
in Figure 2b, RGNN models have a better capability of distinguishing noisy features than GNNs
with residual connections. RGAT-LSTM and RGAT-GRU work similarly and they both outperform
GAT-Res and GAT in a large margin. Same analyses for GCN are shown in the Appendix C.

4 Conclusion

In this paper, we systematically evaluate the effect of adding recurrent units. Our results demonstrate
that GNN models with recurrent units are much easier to extend to deeper models than GNN models
with residual connections. Compared to previous methods, the presented RGNN models establish
new state-of-the-art results on three benchmark datasets under both the supervised setting and the
unsupervised setting. In our further analyses, we show RGNN models are more robust to noisy
information from graph structure as well as local features, which enables a deeper graph neural
network.
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Appendix

A. Datasets and Experimental Setup

We adopt three commonly used benchmark datasets in our experiments. A summary of these datasets
is shown in Table 2.

Pubmed is a citation dataset introduced by [24]. Nodes represent academic papers within the
Pubmed database and links are citations between papers. Node features are sparse bag-of-words
representations of papers. Labels are the categories of these papers. Following [2], we use all labeled
training examples for training per the supervised learning scenario. Because of the sparsity of this
graph, we only test models with the supervised setting on Pubmed.

Reddit is a social network dataset compiled in [8]. It contains 232K Reddit posts as nodes. If the
same user comments on two posts then there is a link between these two posts. Node features are
generated from Glove word embeddings [20]. The node label in this case is the “subreddit” a post
belongs to. Because of the graph size, we apply batched training on this dataset.
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PPI contains 24 protein-protein interaction graphs, with each graph corresponding to a different
human tissue [32]. Node features include positional gene sets, motif gene sets, and immunological
signatures. Node labels are protein roles in terms of their cellular functions. Following [8], we train
all models on 20 graphs, validate and test on 2 graphs each. It validates the generalizing performance
across graphs.

Table 2: Statistics of three datasets

Data # Nodes # Edges # Features # Classes
Pubmed 19, 717 (1 graph) 44, 338 500 3
Reddit 232,965 (1 graph) 11, 606, 919 602 41

PPI 56,944 (24 graph) 818,716 50 121

Supervised learning: We set dimensions of hidden states as 64, 600, and 1024 for Pubmed, Reddit,
and PPI respectively. For GAT based models, we use 8 heads for Pubmed, 5 heads for Reddit, 4 heads
for PPI. We apply dropout [26] on the input features for Pubmed, PPI with dropout rate 0.2. We apply
two-layer GNN models for Pubmed and Reddit, and three-layer ones for PPI. Each layer in GNNs
is followed by an exponential linear unit (ELU) nonlinearity [5]. Models are trained with Adam
optimizer [11] with an initial learning rate of 0.01 for Pubmed, and 0.001 for other datasets. We
apply batched training on the Reddit dataset with neighborhood sample sizes S1 = 25 and S2 = 10.
The batch size is 128. Because of the dataset size, we run models 5 times and report an average
performance for Pubmed and PPI.

Unsupervised learning: In the unsupervised setting, we use two-layer GNN models. The negative
sampling sizeK is 10. Random walk lengths for PPI and Reddit are 2 and 3 respectively. Other hyper-
parameter settings are the same with supervised learning, except for that we have not applied dropout
here. After we get the node representations with unsupervised learning, we use representations of
training nodes to train a downstream linear classifier same as GraphSAGE [8].

In both learning scenarios, we strictly follow the inductive learning setting where validation and test
nodes are hidden during training. We ran our experiments on a linux machine with 4 NVIDIA Titan
XP GPUs (12GB of RAM), one Intel Core i7-6850K CPU, 128GB of RAM.

B. Model Depth Analysis on Pubmed

In Figure 3a and 3b, for Pubmed dataset, best results are obtained with shallow models. Without
residual connections or recurrent units, the performance of GNN models decreases with larger depth.
GNN-Res models degenerate when the model is deeper than 5 layers. On the contrary, deep RGCN
and RGAT still work similarly to shallow models, as LSTM and GRU successfully capture the
long-term dependency.

(a) GCN based models on Pubmed (b) GAT based models on Pubmed

Figure 3: Influence of model depth (number of layers) on performance. Markers denote averaged
micro-F1 scores on test dataset in 5 runs. Shaded areas represent standard deviations. We show
results for RGNN with LSTM and GRU units, GNN with residual connections, and standard GNN
models.
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C. Perturbation Analysis for GCN

As shown in Figure 4a and 4b, GCN models with LSTM and GRU units can successfully avoid the
noisy information from graph structures as well as nodes’ local features. In the case of noisy feature,
the performance of RGCN-LSTM is generally better than RGCN-GRU, but it decreases faster than
RGCN-GRU in extreme cases (p > 0.7).

(a) GCN based models with noisy graphs (b) GCN based models with noisy features

Figure 4: Perturbation analysis. Markers denote averaged micro-F1 scores on test graphs of PPI in 5
runs. Shaded areas represent standard deviations. We show results for RGNN with LSTM and GRU
units, GNN with residual connections, and standard GNN models.
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