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Abstract
We address the problem of affordance classification for class-agnostic objects
considering an open set of actions, by unsupervised learning of object interactions,
inducing object affordance classes. A novel qualitative spatial representation
incorporating depth information is used to construct Activity Graphs which encode
object interactions. These Activity Graphs are clustered to obtain interaction
classes, and subsequently extract classes of object affordances. Our experiments
demonstrate that our method learns object affordances without being scene- or
object-specific.

1 Introduction

In the literature, the term affordance of an object differs depending on the context. In some robotic
applications, e.g. robot manipulation tasks, the definition of affordance is bound to the part of an
object which can be afforded in a specific way, e.g. the hand of a hammer has the affordance of
‘hold’ whereas the head has the affordance of ‘hit’. In contrast, when considering a human-object
interaction recognition task, affordance can be interpreted as the way an object is afforded by the
human in a scene, e.g. if a human uses a book as a hammer then the book will have the affordance
of ‘hit’. Moreover, any object may have more than one affordance as it depends on the purpose it is
being used for, e.g. a book can have the affordance of ‘hit’ when it is being utilized as a hammer or
‘hold’ when it plays the role of a tray, and such multi-labelled affording objects can be recognized by
considering their interactions with other objects [1].

Several methods have been proposed for detecting functional object parts as well as affordance labels.
Some works involve the detection of object affordance parts by considering their visual characteristics
and their geometric features [2, 3, 4, 5, 6, 7]. Incorporating knowledge of the scene and context
in which an object is being used boosts prediction accuracy [8, 9]. However, the task becomes
challenging when no scene or object restrictions take place and the affordance space enlarges. For this
purpose, many works have considered exploiting the correlation of human actions and the detected
objects in a scene for predicting object affordances, e.g. a DL architecture for inferring human-object
interactions [10], as well as the people’s skeletal data to predict the functionality of the detected
objects [11]. Fang et al. [12] exploit demonstration video data for reasoning about affordances by
predicting the affordance location on the object along with the action of a human agent. Human-object
and object-object interactions are also considered by exploiting object trajectories [13, 14].

However, object occlusion is one of the fundamental obstacles in these works. To overcome this,
some research has focused on tracking the occlusion and detecting the containers and the containee
objects in a scene [15, 16, 17, 18] assuming a predefined set of interactions/affordances. Nonetheless,
such an assumption restricts the method to be applied to a limited number of domains. Another stream
of works introduces graph structures of object interactions to accommodate domain independence,
e.g. a graph representation captures qualitative spatio-temporal relationships between objects and
thus infers event classes from which a hierarchy of functional object categories is induced [19];
occlusions are not explicitly handled though. Aksoy et al. [20] also employ a graph representation
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Figure 1: AsG construction from pair-wise object interactions captured in a video scene.

based on the scene semantics, correlating segmented objects in reference to their interactions, though
a pre-specified set of objects is solely considered with a very limited set of affordances.

In this work we present a novel approach for addressing the problem of affordance classification by
exploiting pair-wise object interactions in RGB-D data. By learning a high-level representation of
interactions, our approach is not limited to any specific scene type, or a predefined number of objects,
and it tackles the issue of temporally occluded objects. The proposed methodology is orthogonal to the
employed set of affordances, and therefore can be extended to incorporate any affordance provided the
availability of visual data. To abstract from the continuous space of spatio-temporal interactions, we
employ a high-level graph structure, the Activity Graph, for representing pair-wise object interactions
while acquiring novel depth-enhanced qualitative spatio-temporal relations between pairs of objects to
handle occlusions. Our methodology examines object affordances in the context of interactions, thus
the affordance of an object is characterized by the interaction it is involved in. Affordances of objects
are deduced from their pair-wise interactions, in reference to their Activity Graphs. From these
graph representations we learn in an unsupervised way affordance classes through exploiting their
intra-class graph similarity and clustering them into groups. Clustering graph structures produces a
hierarchical tree representation which demonstrates their graph similarity.

2 Methodology
Graph structures are able to capture high level information of relations or even dynamic relational
changes, e.g. a spatial relation between two entities or their spatio-temporal relational change, while
interacting. From a video demonstrating a human activity, we represent the spatio-temporal relational
changes, describing interactions of objects in the scene, by employing a graph structure called an
Activity Graph, discussed further in this section. A clustering mechanism, is also introduced, acting
on these graphs to produce classes of affordances in reference to their Activity Graph similarities.

Activity Graph. Sequences of interactions which are combined to obtain an activity can be deduced
from an Activity Graph. An Activity Graph (AG) [21], is a graph representation which captures
spatio-temporal information of the interactions between entities present in a video sequence. Let
G = (V,E) be an AG, where the vertices V are partitioned into 3 layers Ventities, Vspat, and Vtemp
and the edges E exists only between adjacent layers to represent pair-wise entity interactions. Each
set of vertices carries a different kind of information about the activity performed. Ventities is the
set of entities which interact, Vspat corresponds to the set of spatial relations which occur during an
activity, and Vtemp holds the temporal information of the occurrence of the spatial relations.

Initially, the set Vspat is determined by the objects’ interactions in the 2D image plane and corresponds
to the spatial interactions of their bounding boxes. To abstract from continuous space we capture
qualitative relations to acquire more abstract representations. More specifically, we exploit the Region
Connection Calculus (RCC5) relations [22, 23] as illustrated in Fig. 1(d). Vtemp encodes the temporal
relationships between the episodes over which particular spatial relationships hold. We exploit Allen’s
interval algebra [24] which consist of the relations: ‘before’ (<, >), ‘meets’ (m, mi), ‘overlaps’, (o,
oi), ‘starts’ (s, si), ‘during’ (d, di), ‘finishes’ (f, fi), and ‘equals’ (=).

An object interaction is captured from a subgraph of anAG, called Activity sub-Graph orAsG, which
comprise the subset V sspat of Vspat and V stemp of Vtemp vertices indicating a particular interaction
between a corresponding pair of objects, V sentities. Such AsGs are depicted in Fig. 1(c).
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Figure 2: (a)frame with detected objects. Depth distribution of convex (b,d) and concave (c,e) objects.

The sequence of spatial relations obtained in every pair-wise interaction is extracted from the presence
of episodes, which represent a period of time throughout which a spatial relation between the pair of
entities occurs, whilst before and after the defined episode a different spatial relation holds. Fig. 1(b)
shows the episodes which are extracted from all the pair-wise entity interactions in a video.

Depth-enhanced Spatial Relations. Though simple and discrete object interactions are captured
efficiently by employing the RCC5 relations in the image plane, the determination of more complex
spatial relational structures is challenging, especially when considering a cluttered scene, i.e. occlu-
sion of objects prevent detection of an interaction. To address this limitation we exploit the depth
information of RGB-D video data in order to infer more accurately the objects’ relative positions.

Without loss of generality, we focus on creating groups of the affordances contain and support as
these are the most prominent and their distinction is challenging in view of object interactions and oc-
clusions. The inference of these object affordances relies only on basic types of interactions; however
due to the occlusion of objects without the utilization of depth information their differentiation is
not a simple task. Though RCC5 is dimension independent, we enhance the calculation of RCC5
relations with the depth information available of the involved objects, rather than only exploiting
their 2D projections in the camera plane, acquiring knowledge about their convexity-type. These
enhanced relations are employed for producing the Vspat set of the AGs.

We introduce depth-enhanced RCC5 (D-RCC5) spatial relations aiming at grouping the objects in the
scene into three convexity-based categories: ‘convex’, ‘concave’, and ‘surface’, in reference to their
depth distribution, as depicted in Fig. 2. By estimating the distribution of the depth information we
are able to obtain knowledge about the indentation area (m-) and protrusion area (M+) of an object,
as defined in the Process-Grammar [25]. The details of the algorithm produced for the determination
of the object’s convexity-type can be found in Appendix A.1.

Unsupervised Learning from AsGs. Clustering AsGs results in groups of similar pair-wise inter-
action graphs. Having extracted a set of AsGs, we measure the difference between these graph
structures, and perform divisive clustering [26] on them to obtain classes of interactions, and thus
classes of affordances. From the produced classes of interactions, obtained from processing only
object-object interactions, we can infer the presence of affordances which are similar to each other.

To measure the difference between AsGs we consider the differences of their spatial and temporal
vertex sets (V sspat, V

s
temp). V sentities is not exploited in this process since each object is represented

by a class-agnostic entity, thus does not contribute any information. Let Gα and Gβ be two AsGs
and V sαspat, V

sα
temp, V sβspat, and V sβtemp the spatial and temporal vertex sets respectively. The set of the

unique spatial (V sα,sβspat ) and temporal (V sα,sβtemp ) vertices comprise of the vertices of the two graphs
which are present in only one of the Gα and Gβ , as defined in Eq. 1.

V sα,sβR = {v : v ∈ {V sαR \ V sβR } ∪ {V
sβ
R \ V

sα
R }}, where R ∈ {spat, temp} (1)

To cluster relational graph structures we employ a metric of vertex differences for capturing similari-
ties and dissimilarities between graphs. As the relational graph structures we cluster are undirected
and consist of specific types of vertices, spatial and temporal, we use a set Edit Distance (sED)
metric with equally weighted intra-vertex-type differences, which is defined as:

sED =
1

2

∑
v∈V sα,sβspat

v +
1

2

∑
v∈V sα,sβtemp

v (2)

where V sα,sβspat and V sα,sβtemp are defined in Eq. 1. Graphs which represent different interactions, hence
their spatial and temporal relational sets differ, have a higher value of the sED metric from graphs
representing the same or similar interaction. We demonstrate that by utilizing the introduced D-RCC5
relations more complete and homogeneous clusters are formed enhancing the robustness of the overall
affordance clustering system.
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Figure 3: Enhanced confusion matrices without (a) and with (b) using D-RCC5 relations, as well as
metrics of the baseline and our approach (c).
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Figure 4: sED values of all possible comparisons of pair-wise interactions.

3 Experiments
We evaluate the proposed approach on the CAD120 dataset [27]. Class-agnostic objects’ bounding
boxes are acquired by employing the Faster R-CNN framework [28] with a pre-trained model
on COCO dataset [29] using the ResNet101 network architecture [30]. We further exploited the
Convolutional Pose Machine [31] to obtain the skeletal data of the humans in the scene. Additionally,
to eliminate the human’s RGB-D information from the predicted objects’ bounding boxes, we exploit
a human mask from the DensePose R-CNN framework [32]. Further details of the experimental setup
can be found in Appendix A.2. We compare our work with a baseline, which comprises relational
graphs with standard RCC5 spatial relations [22, 23], similar to [19].

For the evaluation of the clusters produced, we exploit the v-measure, homogeneity, completeness, and
normalized-mutual information scores. Also we analyze the results of an enhanced confusion matrix,
which is defined later in this section. All metrics are normalized, with higher scores corresponding
to better correlation of the predicted clusters to the ground truth classes of affordances. Fig. 3(c)
summarizes our results, indicating an increase in all examined metrics demonstrating notable benefits
obtained by incorporating objects’ depth information in the AGs.

Furthermore, we compare enhanced confusion matrices for the baseline and the proposed approach,
featuring an extra row and column for the false positive (FP) and false negative (FN) interactions
of objects accordingly. Specifically, for every predicted affordance cluster we observe the value
of interactions that do not correspond to a true affordance label (FP); we also examine for every
affordance class the value of non-detected interactions (FN). From the enhanced confusion matrix we
obtain a 47.6% decrease of the FP object interactions while employing D-RCC5 relations. In Fig. 3 a
clear distinction is illustrated between the affordance classes when D-RCC5 spatial relations are being
employed, in contrast to the baseline where the ‘support’ affordance can be misclassified as ‘contain’.
However, Fig. 3(a) introduces a notable score of misclassification of the ‘contain’ affordance to
the class ‘support’. By analyzing the test set employed to evaluate our approach we observe that a
significant number of concave objects were not detected as the concavity was not visible due to the
camera’s position. This resulted to a 16.6 percentage points drop of classification accuracy for the
‘contain’ affordance causing a 33% of ‘contain’ affordances to be classified as ‘support’.

Fig. 4 illustrates the graph differences between all possible pair-wise interactions detected. Darker
cell colors correspond to a higher sED value, indicating more homogeneous clusters with D-RCC5
relations. More qualitative results can be found in Appendix 6.

4 Conclusions
We have addressed the problem of learning in an unsupervised way graph structures from RGB-D
video data to predict domain independent object affordances. Our experiments demonstrate that
enhancing the Activity Graphs with the objects’ depth information produces more complete clusters
of affordances compared to primitive spatio-temporal relations.
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A Appendices

A.1 Spatial Relation Depth-enhancement Algorithm

Alg. 1 describes the convexity-type selection process for each object detected in the scene. The
algorithm uses as input the depth distribution from the predicted object’s bounding box and outputs
its convexity-type. The human’s RGB-D information is excluded from the processed bounding box,
employing a deep learning-based human pose estimation framework, for acquiring more accurate
concave curve information. Initially a convexity threshold has been selected (threshconvex) defining
the upper limit of the depth range of a ‘convex’-type object, the selection of which is discussed in
Appendix A.2. Objects with depth range exceeding this threshold are either considered ‘concave’-
or ‘surface’-type depending on their depth contour hierarchies. Contour hierarchies provide a tree
structure of contour inclusion, where every node of the tree stands for a contour and every parent
includes its children. Hence, the detection of a child contour in the depth space, deduces the presence
of a concave curve , thus a ‘concave’-type object and ‘surface’-type otherwise.

The determination of the object’s convexity-type serves in defining the boundaries of the object’s
depth information, as presented in Alg. 2. The algorithm exploits the predicted object’s depth
distribution to infer its depth boundaries. The object’s depth is employed to ascertain an RCC5
relation when two objects interact in the 2D image plane, e.g. the PP RCC5 spatial relation occurs
between one or more ‘concave’-type objects when the depth information of the containee object
confirms that it is between the m- and M+ areas of the container object. For a ‘concave’-type object
we consider partitioning the depth information into h sections where the n with the highest depth
values are estimated to capture the concave curve of the object. We set the depth boundaries of such
objects to enclose the concave curve’s depth information for detecting a PP RCC5 relation. For
a ‘convex’- and ‘surface’-type object the depth boundaries are not processed since no concavity is
present.

Algorithm 1 Define convexity type of object.
Given: threshconvex

1: procedure OBJECTCONVEXITY(distdepth)
2: maxd ← max(distdepth)
3: mind ← min(distdepth)
4: if (maxd −mind) < threshconvex then
5: objecttype ← convex
6: else
7: C ← ContourHierarchy(distdepth)
8: if C.child() exists then
9: objecttype ← concave

10: else
11: objecttype ← surface
12: return objecttype
13: end

Algorithm 2 Define convexity area of an object.
Given: h, n

1: procedure CONVEXITYAREA(distdepth)
2: maxd ← max(distdepth)
3: mind ← min(distdepth)
4: objecttype ← ObjectConvexity(distdepth)
5: if objecttype = concave then
6: sections← (maxd −mind)/h
7: maxcArea ← maxd
8: mincArea ← maxd − (n ∗ sections)
9: else

10: maxcArea ← maxd
11: mincArea ← mind
12: return maxcArea,mincArea
13: end

A.2 Experimental Setup

The methodology introduced was evaluated on the CAD120 dataset [27] which consists of 120 videos,
of 30fps, capturing human activities from everyday-life scenarios. Each video records a single activity
with a single actor, who interacts with one or more objects relevant to the activity being performed.
For the experiments conducted a test set of 10% of the total amount of videos was randomly selected,
while the rest was used as training set.

Class-agnostic objects’ bounding boxes were acquired by employing the Faster R-CNN framework
[28]. The set of object classes used for detection consist of all indoor manipulable objects from the
COCO dataset. To filter out false positive and multiple detections of objects, we set the detection
confidence score to 50% and the value of the Non-maximum suppression metric to 0.2, selected from
an empirical study. Furthermore, we employed the QSRlib library [33] for the construction of the
AGs.

However, even when employing qualitative spatial relations to represent spatial interactions of objects,
the transitions from one relation to another is not always smooth. To eliminate sparse and false
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positive spatial relations we exploit a median filter of kernel size λ acting on the qualitative spatial
relation detection sequence. Fig. 5(a) illustrates the experiments conducted on the training set with
various kernel sizes (λ ∈ {1, 3, 5, 7, 9, 11}) for determining the best value for the kernel size in
reference to the reported evaluation metrics. A median filter with kernel size 5 was applied.

Fig. 5(b) demonstrates the experiments on the training set for the selection of the threshconvex threshold
value employed for conditioning the ’convex’-type objects, as described in Appendix A.1. Regarding
the examined metrics, a value of threshconvex = 6 achieves higher scores in all measures.
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Figure 5: Tuning of the kernel size (λ) of the median filter and threshconvex for defining ‘convex’-type
objects, respectively.

A.3 Qualitative Results

The points in the x-axis of the depicted dendrograms in Fig. 6 correspond to the pair-wise interactions
detected and the y-axis to the distance measure used for clustering these interactions. The colored
branches of the dendrograms demonstrate the different interaction classes corresponding to distinct
clusters. Though we evaluate two prominent affordances (‘contain’ and ‘support’), multiple clusters
are being produced from the clustering mechanism. This results from differences in the AGs of the
same described affordances because they were performed in different ways by different agents.

Fig. 6 demonstrates that many small clusters, produced when employing RCC5 relations, are merged
into a single one, when exploiting D-RCC5. Consequently, the overall number of clusters is reduced
leading to a higher completeness clustering result.

8



0 5 13 23 36 44 33 31 18 10 25 3 30 34 22 15 14 7 1 28 37 8 24 39 42 43 41 40 35 26 20 19 17 12 11 9 2 32 16 27 45 21 6 29 38 4 58 59 57 56 55 54 53 52 51 50 49 48 47 46

Pair-wise Interactions

0

1

2

3

4

5

Di
st

an
ce

 M
ea

su
re

0

0.5

1

0 0 0

0.5

1.5

0 0 0 0 0 0 0 0

0.5

0

1

0

0.5

1.5

0 0 0 0 0 0 0 0 0 0 0 0

0.5

1

1.5

2.5

0 0 0

0.5

1

1.5

3

0 0 0 0 0 0 0 0 0 0 0 0 0

5

Hierarchical Clustering Dendrogram (Divisive)

(a) With RRC5 relations.

16 28 8 5 27 34 24 21 19 13 11 9 6 2 0 18 20 14 17 25 7 30 32 33 31 22 15 12 4 1 10 26 3 23 29 49 50 48 47 46 45 44 43 42 41 40 39 38 37 36 35

Pair-wise Interactions

0

1

2

3

4

5

Di
st

an
ce

 M
ea

su
re

0 0 0 0 0 0 0 0 0 0 0 0 0

0.5

0 0

1

0 0

0.5

1.5

0 0 0 0 0 0

0.5

1.5

0

1

2.5

1

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5

Hierarchical Clustering Dendrogram (Divisive)

(b) With D-RCC5 relations.

Figure 6: Sample outputs of the employed divisive clustering mechanism.
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