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Abstract

Finding an embedding space for a linear approximation of a nonlinear dynamical
system enables efficient system identification and control synthesis. The Koop-
man operator theory lays the foundation for identifying the nonlinear-to-linear
coordinate transformations with data-driven methods. Recently, researchers have
proposed to use deep neural networks as a more expressive class of basis functions
for calculating the Koopman operators. These approaches, however, assume a
fixed dimensional state space; they are therefore not applicable to scenarios with
a variable number of objects. In this paper, we propose to learn compositional
Koopman operators, using graph neural networks to encode the state into object-
centric embeddings and using a block-wise linear transition matrix to regularize
the shared structure across objects. The learned dynamics can quickly adapt to
new environments of unknown physical parameters and produce control signals to
achieve a specified goal. Our experiments on manipulating ropes and controlling
soft robots show that the proposed method has better efficiency and generalization
ability than existing baselines.

1 Introduction

Simulating and controlling complex dynamical systems such as ropes or soft robots rely on the
dynamics model’s two key features: first, it needs to be efficient for system identification and motor
control; second, it needs to be generalizable to a complex, constantly evolving environments.

In practice, computational models for complex, nonlinear dynamical systems are often not efficient
enough for real-time control [21]. The Koopman operator theory identifies nonlinear-to-linear
coordinate transformations allowing efficient linear approximation of nonlinear systems [31, 19].
Fast as they are; however, existing papers on Koopman operators focus on a single dynamical system,
making it hard for them to generalize to cases where there are a variable number of components.

In contrast, recent advances in approximating dynamics models with deep nets have demonstrated
its power in characterizing complex, generic environments. In particular, a few recent papers have
explored the use of graph nets in dynamics modeling, taking into account the state of each object
as well as their interactions. This allows their models to generalize to scenarios with a variable
number of objects [4, 9]. Despite their strong generalization power, they are not as efficient in system
identification and control, because deep nets are heavily over-parameterized, making optimization
time-consuming and sample-inefficient.

In this paper, we propose compositional Koopman operators, integrating Koopman operators with
graph networks for generalizable and efficient dynamics modeling. We build on the idea of encoding
states into object-centric embeddings with graph neural networks, which ensures generalization
power. But instead of using over-parameterized neural nets to model state transition, we identify the
Koopman matrix and control matrix from data as a linear approximation of the nonlinear dynamical
system. The linear approximation allows efficient system identification and control synthesis.
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Figure 1: Overview of our model. A graph neural network φ takes in the current state of the physical system
xt, and generates object-centric representations in the Koopman space gt. We then use the block-wise Koopman
matrix K and control matrix L identified from equation 4 to predict the Koopman embeddings in the next
time step gt+1. Note that in K and L, object pairs of the same relation (e.g., adjacent blocks) share the same
sub-matrix. Another graph neural network ψ maps gt+1 back to the original state space (i.e., xt+1). The
mapping between gt and gt+1 is linear and is shared across all time steps. We can iteratively apply K and L to
the Koopman embeddings and roll multiple steps into the future.

The main challenge of extending Koopman theory to multi-object systems is scalability. The number
of parameters in the Koopman matrix scales quadratically with the number of objects, which harms
the learning efficiency and leads to overfitting. To tackle this issue, we exploit the structure of the
underlying system and use the same block-wise Koopman sub-matrix for object pairs of the same
relation. This significantly reduces the number of parameters that need to be identified by making it
independent of the size of the system.

Our experiments include simulating and controlling ropes of variable lengths and soft robots of
different shapes. The compositional Koopman operators are significantly more accurate than the state-
of-the-art learned physics engines [4, 16], and is 20 times faster when adapting to new environments of
unknown physical parameters. Our method also outperforms vanilla deep Koopman methods [17, 22]
and Koopman models with manually-designed basis functions, which shows the advantages of using
a structured Koopman matrix and graph neural networks. Please refer to our supplement video.

2 Method
2.1 Compositional Koopman Operators

The Koopman theory† [14, 15] says a non-linear dynamical system can be mapped to a higher
dimension space where the dynamics becomes linear. Formally, we denote a non-linear dynamical
system as xt+1 = F (xt,ut), where xt and ut are the state and the control signal at time step t. There
is a function g that builds the correspondence between the original non-linear forwarding and the linear
forwarding using the Koopman matrix K and the control matrix L, i.e., g(xt+1) = Kg(xt) + Lut.

The dynamics of a physical system are governed by physical rules, which are usually shared across
the many objects in the system. We propose Compositional Koopman Operators to incorporate
such compositionality to the Koopman theory. In section C in the appendix, we analyze a simple
multi-object system - a linear spring system. Motivated by the analysis, we draw several principles to
inject the right inductive bias to the Compositional Koopman Operators.

Consider a system with N objects, we denote xt as the system state at time t and xt
i is the state of

the i’th object. Denoting gt as the Koopman embedding, we propose following assumptions on the
compositional structure of the Koopman embedding and the Koopman matrix.
• The Koopman embedding of the system is composed of the Koopman embedding of every

objects. Similar to the decomposition in the state space, we assume the Koopman embedding can
be divided into object-centric sub-embeddings, i.e. gt = [gt

1
>
, · · · , gt

N
>
]> ∈ RNm , where we

overload the notation and use gt
i = gi(x

t) ∈ Rm as the Koopman embedding for the i’th object.
• The Koopman matrix has a block-wise structure. It is natural to think the Koopman matrix is

composed of block matrices after assuming an object-centric Koopman embeddings. In equation 1,
Kij ∈ Rm×m and Lij ∈ Rm×|ui| are blocks of the Koopman matrix and the control matrix, while
ut = [ut

1
>
, · · · ,ut

N
>
]> is the control signal at time t:g

t+1
1
...

gt+1
N

 =

K11 · · · K1N

...
. . .

...
KN1 · · · KNN


g

t
1
...

gt
N

+

L11 · · · L1N

...
. . .

...
LN1 · · · LNN


u

t
1
...

ut
N

 . (1)

†Please see section B in the supplementary material for a more detailed introduction to the Koopman theory.
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Note that those matrix blocks are not independent but some of them share the same set of values.
• The same physical interactions shall share the same transition block. The equivalence between

the blocks should reflect the equivalence of the objects, where we use the same transition sub-matrix
for object pairs of the same relation. For example, if the system the composed of N identical
objects, then, by symmetry, all the diagonal blocks should be the same while all the off-diagonal
blocks should also be the same. The repetitive structure allows us to efficiently identify the values
using least square regression.

2.2 Learning the Koopman Embeddings Using Graph Neural Networks

For a physical system that contains N objects, we can represent the system using a graph Gt =
〈Ot, R〉, where vertices Ot = {ot

i} represent objects and edges R = {rk} represent pair-wise
relations. Specifically, ot

i = 〈xt
i,a

o
i 〉 , where xt

i is the state of object i and ao
i is a one-hot vector

indicating the type of this object. Note the operator 〈·, ·〉 denotes vector concatenation. For relation,
we have rk = 〈uk, vk,ar

k〉, 1 ≤ uk, vk ≤ N , where uk and vk are integers denoting the receiver and
the sender, respectively, and ar

k is a one-hot vector denoting the type of the relation k.

We use a graph neural network similar to Interaction Networks (IN) [4] to generate object-centric
Koopman embeddings. IN is a general-purpose, learnable physics engine that performs object- and
relation-centric reasoning about physics. IN defines an object function fO and a relation function
fR to model objects and their relations in a compositional way. Specifically, we iteratively calculate
the edge effect etk = fR(o

t
uk
,ot

vk
,ar

k)k=1...N2 , and node effect gt
i = fO(o

t
i,
∑

k∈Ni
etk)i=1...N ,

where ot
i = 〈xt

i,a
o
i 〉 denotes object i at time t, uk and vk are the receiver and sender of relation rk

respectively, and Ni denotes the relations where object i is the receiver. In total, we denote the graph
encoder as φ. To train the model, we also define a graph decoder ψ to map the Koopman embeddings
back to the original state space. Figure 1 shows an overview of our model. Please refer to Section D
in the supplementary material for the loss functions and training protocols.

The learned dynamics in the Koopman space is linear. We can perform efficient system identification
using least-square regression, and control synthesis using quadratic programming. Please see
Section E and F for the exact algorithms.

3 Experiments

Environments. We evaluate our method by assessing how well our method can simulate and
control ropes and soft robots. Specifically, we consider three environments. (1) Rope (Figure 2a):
the top mass of a rope is fixed to a specific height. We apply force to the top mass to move it in a
horizontal line. The rest of the masses are free to move according to spring force and gravity. (2)
Soft (Figure 2b): we aim to control a soft robot that is consist of soft blocks. Blocks in dark grey as
rigid and those in light blue are soft blocks. Each one of the dark blue blocks are soft but have an
actuator inside that can contract or expand the block. One of the block is pinned to the ground as
shown using the red dots. (3) Swim (Figure 2c): instead of pinning the soft robot to the ground, we
let the robot swim in fluids. The colors shown in this environment have the same meaning as in Soft.
Baselines. We compare our model to following baselines: Interaction Networks [4] (IN), Propaga-
tion Networks [16] (PN) and Koopman method with hand-crafted Koopman base functions (KPM).
Section I explains more on how we use them to perform simulation and control tasks.

3.1 Simulation

Please refer to Section G in the supplementary material for details on data generation, and Section H
for evaluation protocols. Figure 2 shows qualitative results on simulation. Our model accurately
predicts system dynamics for more than 100 steps. For Rope, the small prediction error comes from
the slight delay of the force propagation inside the rope; hence, the tail of the rope usually has a larger
error. For Soft, our model captures the interaction between the body parts and generates accurate
prediction over the global movements of the robot. The error mainly comes from the mis-alignment
of some local components. Figure 3 shows quantitative results. IN and PN do not work well due
to inefficient system identification ability. The KPM baseline with simple hand-crafted polynomial
Koopman basis works reasonably well in the Rope and Swim environment, partly due to the fact that
KPM uses the same system identification algorithm as our model, leveraging the prior knowledge on
the structure of the system. Our model significantly outperforms all the baselines except in the Swim
environment, where we are on par with KPM.
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Figure 2: Qualitative results. Top: our model prediction matches the ground truth over a long period of time.
Bottom: for control, we use red dots or frames to indicate the goal. We apply the control signals generated from
our identified model to the original simulator, which allows the agent to accurately achieve the goal. Please refer
to our supplementary video for more results.
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Figure 3: Quantitative results on simulation. The x axis shows time steps. The solid lines indicate medians
and the transparent regions are the interquartile ranges of simulation errors. Our method significantly outperforms
baselines in both Rope and Soft.

3.2 Control

As the simulation errors of IN and PN are too large for control, we compare our model with
KPM. In Rope, we ask the models to perform open-loop control where it only solves the Quadratic
Programming (QP) once at the beginning. The length of the control sequence is 40. When it comes
to Soft/Swim, each model is asked to generate control signals of 64 steps, and we allow the model
to receive feedback after 32 steps. Thus every model have a second chance to correct its control
sequence by solving the QP again at the time step 32. As shown in Figure 2, our model can accurately
manipulate the rope to reach a target state. It learns to leverage inertia to reach target shapes. As for
controlling a soft body swinging on the ground or swimming in the water, our model can move each
parts (the boxes) of the body to the exact target positions. The small control error comes from the
slight misalignment of the orientation and the size of the body parts. Figure 4 in the supplementary
material shows that quantitatively our model outperforms KPM, too.
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Appendix

A Related Work
Koopman operators. The Koopman operator formalism of dynamical systems is rooted in the
seminal works of Koopman and Von Neumann in the early 1930s [14, 15]. The core idea is to map the
state of a nonlinear dynamical system to an embedding space, over which we can linearly propagate
into the future. The linear representation will enable efficient prediction, estimation, and control using
tools from linear dynamical systems [30, 26, 20]. People have been using hand-designed Koopman
observables for various modeling and control tasks [8, 13, 1, 7, 2]. Some recent works have applied
the method to the real world and successfully control soft robots with great precision [6, 18].

However, hand-crafted basis functions sometimes fail to generalize to more complex environments.
Learning these functions from data using neural nets turns out to generate a more expressive invariant
subspace [17, 29] and has achieved successes in fluid control [22]. Morton et al. [23] has also
extended the framework to account for uncertainty in the system by inferring a distribution over
observations. Our model differs by explicitly modeling the compositionality of the underlying system
with graph networks. It generalizes better to environments of a variable number of objects or soft
robots of different shapes.
Learning-based physical simulators. Battaglia et al. [4] and Chang et al. [9] first explored learning
a simulator from data by approximating object interactions with neural networks. These models
are no longer bounded to hard-coded physical rules, and can quickly adapt to scenarios where the
underlying physics is unknown. Please refer to Battaglia et al. [3] for a full review. Recently,
Mrowca et al. [24] extended these models to approximate particle dynamics of deformable shapes and
fluids. Flexible as they are, these models become less efficient during model adaptation in complex
scenarios, because the optimization of neural networks usually needs a lot of samples and compute,
which limits its use in an online setting. The use of Koopman operators in our model enables efficient
system identification, because we only have to identify the transition matrices, which is essentially a
least-square problem and can be solved very efficiently.

Learned physics engines have also been used for planning and control. Many prior papers in this
direction learn a latent dynamics model together with a policy in a model-based reinforcement
learning setup [27, 11, 25, 10]; a few alternatives uses the learned model in model-predictive control
(MPC) [28, 16, 12]. In this paper, we leverage the fact that the embeddings in the Koopman space is
propagating linearly through time, which allows us to formulate the control problem as quadratic
programming and optimize the control signals much more efficiently.

B The Koopman Operators

Let xt ∈ X ⊂ Rn be the state vector for the system at time step t. We consider a non-linear
discrete-time dynamical system described by xt+1 = F (xt). The Koopman operator K is an
infinite-dimensional linear operator that acts on all observable functions g : X → R. The Koopman
theory says that any non-linear discrete-time system can be mapped to a linear discrete-time system
through a certain Koopman operator [14]. The non-linear system forwarding in the original state
space corresponds to the forwarding of its observations described by the Koopman operator, i.e.
Kg(xt) = g(F (xt)) = g(xt+1).

Although the theory guarantees the existence of the Koopman operator, its use in practice is limited
by its infinite dimensionality. Most often, we assume there is an invariant subspace G, spanned by
a set of base observation functions {g1, · · · , gm}, such that Kg ∈ G for any g ∈ G, where K is a
Rm×m matrix. With a slightly abuse of the notation, we now use g(xt) : Rn → Rm to represent
[g1(x

t), · · · , gm(xt)]T . By constraining the Koopman operator on this invariant subspace, we get a
finite dimensional linear operator K that we refer as the Koopman matrix.

Traditionally, people hand-craft base observation functions from the knowledge of underling physics.
The system identification problem is then reduced to finding the Koopman operator K, which can
be solved by linear regression given historical data of the system. Recently, researchers have also
explored data-driven methods that automatically find the Koopman invariant subspace via representing
the observation functions g(x) via deep neural networks.

Above is the Koopman theory on modeling unforced dynamics. Now consider a system with an
external control input ut and a dynamics model xt+1 = F (xt,ut). We aim to find the observation
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functions and the linear dynamics model in the form of g(xt+1) = Kg(xt)+Lut, where we assume
the control signal has linear effects in the observation domain. Here the coefficient matrix L is
referred to as the control matrix.

C Motivating Example

Consider a system with n balls moving in a 2D plane, each pair connected by a linear spring. Assume
all balls have mass 1 and all springs share the same stiffness coefficient k. We denote the i’s ball’s
position as (xi, yi) and its velocity as (ẋi, ẏi). For ball i, equation 2 describes its dynamics, where
xi , [xi, yi, ẋi, ẏi]

T denotes ball i’s state:

ẋi =

ẋiẏiẍi
ÿi

 =


ẋi
ẏi∑n

j=1 k(xj − xi)∑n
j=1 k(yj − yi)

 =

 0 0 1 0
0 0 0 1

k − nk 0 0 0
0 k − nk 0 0


︸ ︷︷ ︸

,A

xiyiẋi
ẏi

+∑
j 6=i

0 0 0 0
0 0 0 0
k 0 0 0
0 k 0 0


︸ ︷︷ ︸

,B

xiyiẋi
ẏi

 .
(2)

We can represent the state of the whole system using the union of every ball’s state, where x =
[x1, · · · ,xn]

T . Then the transition matrix is essentially a block matrix, where the matrix parameters
are shared among the diagonal or off-diagonal blocks as shown in equation 3:

ẋ =


ẋ1

ẋ2

...
ẋn

 =


A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A



x1

x2

...
xn

 . (3)

Based on the linear spring system, we make three observations for multi-object systems.

• The system state is composed of the state of each individual object. The dimension of the
whole system scales linearly with the number of objects. We formulate the system state by
concatenating the state of every object, corresponding to an object-centric state representation.

• The transition matrix has a block-wise substructure. After assuming an object-centric state
representation, the transition matrix naturally has a block-wise structure as shown in equation 3.

• The same physical interactions share the same transition block. The blocks in the transition
matrix encode actual interactions and generalize across systems. A and B govern the dynamics of
the linear spring system, and are shared by systems with a different number of objects.

These observations motivate us to exploit the structure of multi-object systems, instead of assuming
that a 3-ball system and a 4-ball system have different dynamics and need to be learned separately.

D Training GNN models

To make predictions on the states, we use a graph decoder ψ to map the Koopman embeddings back
to the original state space. In total, we have three losses to train the graph encoder and decoder. The
first term is the auto-encoding loss Lae =

1
T

∑
i ‖ψ(φ(xi))−xi‖2. The second term is the prediction

loss. To calculate it, we rollout in the Koopman space and denote the embeddings as ĝ1 = g1, and
ĝt+1 = Kĝt + Lut, for t = 1, · · · , T − 1. The prediction loss is defined as the difference between
the decoded states and the actual states, i.e., Lpred = 1

T

∑T
i=1 ‖ψ(ĝi) − xi‖2. Third, we employ

a metric loss to encourage the Koopman embeddings preserving the distance in the original state
space. The loss is defined as the absolute error between the distances measured in the Koopman space
and that in the original space, i.e., Lmetric =

∑
ij

∣∣‖gi − gj‖2 − ‖xi − xj‖2
∣∣. Having Koopman

embeddings that can reflect the distance in the state space is important as we are using the distance
between the Koopman embeddings to define the cost function for downstream control tasks.

The ultimate training loss is simply the combination of all the terms above: L = Lae +Lpred +Lmetric.
We then minimize the loss L by optimizing the parameters in the graph encoder φ and graph decoder
ψ using stochastic gradient descent. Once the model is trained, it can be used for system identification,
future prediction, and control synthesis.
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E System identification

For a sequence of observations x̃ = [x1, · · · ,xT ] from time 1 to time T , we first map them to
the Koopman space as g̃ = [g1, · · · , gT ] using the graph encoder φ, where gt = φ(xt). We
use gi:j to denote the sub-sequence [gi, · · · , gj ]. To identify the Koopman matrix, we solve the
linear equation minK ‖Kg1:T−1 − g2:T ‖2. As a result, K = g2:T (g1:T−1)† will asymptotically
approach the Koopman operator K with an increasing T . For cases where there are control inputs
ũ = [u1, · · · ,uT−1], the calculation of the Koopman matrix and the control matrix is essentially
solving a least square problem w.r.t. the objective

min
K,L
‖Kg1:T−1 + Lũ− g2:T ‖2. (4)

As we mentioned in the Section 2.1, the dimension of the Koopman space is linear to the number of
objects in the system, i.e., g̃ ∈ RNm×T and K ∈ RNm×Nm. If we do not enforce any structure on
the Koopman matrix K, we will have to identify N2m2 parameters. Instead, we can significantly
reduce the number by leveraging the assumption on the structure of K. Assume we know some
blocks ({Kij}) of the matrix K are shared and in total there are h different kinds of blocks, which
we denote as K̂ ∈ Rh×m×m. Then, the number of parameter to be identified reduce to hm2. Usually,
h is much smaller than N2. Now, for each block Kij , we have a one-hot vector σij ∈ Rh indicating
its type, i.e. Kij = σijK̂. Finally, as shown in equation 5, we represent the Koopman matrix as the
tensor product of the index tensor σ and the parameter tensor K̂:

K = σ ⊗ K̂ =

σ11K̂ · · · σ1NK̂
...

. . .
...

σN1K̂ · · · σNNK̂

 ,where σ =

σ11 · · · σ1N
...

. . .
...

σN1 · · · σNN

 ∈ RN×N×h. (5)

Similarly, we assume that the control matrix L has the same block structure as the Koopman matrix
and denote its parameter as L̂ ∈ Rh×N×|ui|. The least square problem of identifying K̂ and L̂
becomes

min
K̂,L̂
‖(σ ⊗ K̂)g1:T−1 + (σ ⊗ L̂)ũ− g2:T ‖2. (6)

Since the linear least square problems described in equation 4 and equation 6 have analytical solutions,
we have a very efficient system identification method.

F Control Synthesis

During inference, a small amount of the historical data will be used for system identification. We first
use the graph encoder to map the system states to the Koopman space. We then identify the Koopman
matrix and control matrix by solving the least square problem (equation 4 or equation 6).

For a control task, the goal is to synthesize a sequence of control inputs u1:T that minimize C =∑T
t=1 ct(x

t,ut), the total incurred cost, where ct(xt,ut) is the instantaneous cost. For example,
considering the control task of reaching a desired state x∗ at time T , we can design the following
instantaneous cost, ct(xt,ut) = 1[t=T ](‖xt − x∗‖22 + λ‖ut‖22). The first cost term promotes the
control sequence that makes the system state close to the goal, while the second term regularizes the
value of the control signals.
Open-loop control via quadratic programming (QP). Our model maps the original nonlinear
dynamics to a linear dynamical system [5]. Thus, we can solve the control task by solving a linear
control problem. With the assumption that the Koopman embeddings preserve the distance measure,
we define the control cost as ct(gt,ut) = 1[t=T ](‖gt − g∗‖22 + λ‖ut‖22). Basically, we reduce the
problem to minimizing a quadratic cost function C =

∑T
t=1 ct(g

t,ut) over variables {gt,ut}Tt=1

under linear constrains gt+1 = Kgt + Lut, where g1 = φ(x1) and g∗ = φ(x∗). It is exactly a
Quadratic Programming problem, which can be solved very efficiently.
Model predictive control (MPC). Solving the QP gives us control signals that are open-loop,
which might not be good enough for long-term control as the prediction error accumulates. We can
combine it with Model Predictive Control, assuming feedback from the environment every τ steps.
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Figure 4: Quantitative results on control and ablation studies on model hyperparameters. Left: box-plots
show the distributions of control errors. The yellow line in the box indicates the median. Our model consistently
achieves smaller errors in all environments against KPM. Right: our model’s simulation errors with different
amount of data for system identification (d) and different dimensions of the Koopman space (e).

G Data Generation

We generate 10,000 samples for Rope and 50,000 samples for Soft and Swim. Amount them, 90%
are used for training and the rest for testing. Each data sample has 100 time steps.

H Training and Evaluation Protocols

Our model is trained on the sub-sequence of length 64 from the training set. For evaluation, we use
two metrics: simulation error and control error. For a given data sample, the simulation error at
time step t is defined as the mean squared error between the model prediction x̂t+1 and the ground
truth xt+1. For control, we pick the t0’th frame xt0 and the t0 + t’th frame xt0+t from a data
sample. Then we ask the model to generate a control sequence of length t to transfer the system
from the initial state xt0 to the target state xt0+t. The control error at time step t is defined as the
mean squared error between the target state and the state of the system after executing t steps of the
generated control signals. For our experiments we have t = 64.

I Baselines

We compare our model to following baselines: Interaction Networks [4] (IN), Propagation Net-
works [16] (PN) and Koopman method with hand-crafted Koopman base functions (KPM). IN and
PN are the state-of-the-art learning-based physical simulators. For control, we first finetune the
parameters in IN and PN to adapt to the test environment of unknown physical parameters. We then
apply gradient descent to the control signals by minimizing the distance between the prediction from
IN/PN and the target. The generated control sequence is fed to the original simulator to evaluate the
performance. Similar to our method, KPM fits a linear dynamics in the Koopman space. Instead
of learning Koopman observations from data, KPM uses polynomials of the original states as the
basis functions. In our setting, we set the maximum order of the polynomials to be three to make the
dimension of the hand-crafted Koopman embeddings match our model’s.

J Ablation Study

Structure of the Koopman matrix. We explore three different structures of the Koopman matrix,
Block, Diag and None, to understand its effect on the learned dynamics. None assumes no structure
in the Koopman matrix. Diag assumes a diagonal block structure of K: all off-diagonal blocks (Kij

where i 6= j) are zeros and all diagonal blocks share the same values. Block predefines a block-wise
structure, decided by the relation between the objects as introduced in Section 2.2.

Table 1: Ablation study results on the Koopman
matrix structure (Rope environment).

SIMULATION CONTROL

DIAG 0.052 (0.075) 2.337 (2.809)
NONE 0.056 (0.043) 1.522 (1.288)

BLOCK 0.046 (0.041) 0.854 (1.101)

Table 1 includes our model’s simulation error and con-
trol error with different Koopman matrix structures
in Rope. Besides the result on the validation set, we
also report models’ extrapolation ability in parentheses,
where the model is evaluated on systems with more ob-
jects than those in training: each rope has 5 to 9 objects
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in validation, while for extrapolation, each rope has 10
to 14 objects.

Our model with Block structure consistently achieves a smaller error in all settings. Diag assumes an
oversimplified structure, leading to significantly larger errors and failing to make sensible controls.
None has comparable simulation errors but large control errors. Without structure in the Koopman
matrix, it overfits the data and makes the resulting linear dynamics less amiable to the control.
Hyperparameters. In our main experiments, the dimension of the Koopman embedding is set to
m = 32 per object. Online system identification requires 800 data samples for each training/test case.
To understand our model’s robustness under different hyperparameters, we vary the dimension of the
Koopman embedding from 8 to 64 and the number of data samples used for system identification
from 200 to 1,600. Figure 4d shows that the model gives better simulation results when identifying
the system with more data samples. Figure 4f shows that dimension 16 gives the best results on
simulation. It may suggest that the intrinsic dimension of the Koopman invariant space of the Rope
system is around 16 per object.
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