
Multi-Graph Convolutional Neural Networks for
Representation Learning in Recommendation

Jianing Sun and Yingxue Zhang
Montreal Research Center
Huawei Noah’s Ark Lab
Montreal, QC, Canada

{jianing.sun, yingxue.zhang}@huawei.com

Abstract

Personalized recommendation plays an important role in many online services.
Substantial research has been dedicated to learning vector representations of users
and items with Graph Convolutional Networks (GCNs), however, we argue that
existing methods do not make full use of the information that is available from
user-item interaction data and the similarities between user pairs and item pairs.
In this work, we develop a graph convolution-based recommendation framework,
named Multi-Graph Convolution Collaborative Filtering (Multi-GCCF). Multi-
GCCF not only expressively models the high-order information via a bipartite
user-item interaction graph, but integrates the proximal information by building
and processing user-user and item-item graphs. We conduct extensive experiments
on four publicly accessible benchmarks, showing significant improvements relative
to several state-of-the-art collaborative filtering and graph neural network-based
recommendation models.

1 Introduction
Rapid and accurate prediction of users’ preferences is the ultimate goal of today’s recommender
systems [8]. The core method behind recommender systems is collaborative filtering (CF) [9, 5]. The
basic assumptions underpinning collaborative filtering are that similar users tend to like the same
item and items with similar audiences tend to receive similar ratings from an individual.

One of the most successful methods for performing collaborative filtering is matrix factorization
(MF) [5, 3, 4]. More recently, deep learning models have been introduced to boost the performance of
traditional MF models. However, as observed in [11], deep learning-based recommendation models
are not sufficient to yield optimal embeddings because they consider only user and item features.
There is no explicit incorporation of user-item interactions when developing embeddings. A second
limitation of the deep learning models is the reliance on the explicit feedback from users, which is
usually relatively sparse. Recent works by Ying et al. [12] and Wang et al. [11] have demonstrated
the effectiveness of processing the bipartite graph, reporting improvements over the SOTA models.

Despite their effectiveness, we perceive two important limitations. First, these models ignore the
intrinsic difference between the two types of nodes in the bipartite graph (users and items). When
aggregating information from neighboring nodes in the graph during the embedding construction
procedure, the architectures in [12, 11] combine the information in the same way, using a function
that has no dependence on the nature of the node. However, there is an important intrinsic difference
between users and items in a real environment. Second, user-user and item-item relationships are also
very important signals. Although two-hop neighborhoods in the bipartite graph capture these to some
extent, it is reasonable to assume that we can improve the recommendation quality by constructing
and learning from graphs that directly model user-user and item-item relationships.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Figure 1: The overall architecture of Multi-GCCF.

In this paper, we propose a novel graph convolutional neural network (GCNN)-based recommender
system framework, Multi-GCCF, with two key innovations: 1) Capturing the intrinsic difference
between users and items: we apply separate aggregation and transformation functions to process
user nodes and item nodes when learning with a graph neural network. We find that the user and
item embeddings are learned more precisely and the recommendation performance is improved.
2) Modeling user-user and item-item relationships explicitly: we construct separate user-user and
item-item graphs. Multi-GCCF conducts learning simultaneously on all three graphs and employs
a multi-graph encoding layer to integrate the information provided by the user-item, user-user, and
item-item graphs.

2 Methodology

In this section, we explain the three key components of our method. First, we develop a Bipartite
Graph Convolutional Neural Network (Bipar-GCN) that acts as an encoder to generate user and
item embeddings, by processing the user-item interaction (bipartite) graph. Second, a Multi-Graph
Encoding layer (MGE) encodes latent information by constructing and processing multiple graphs.
Third, a skip connection structure between the initial node feature and final embedding allows us to
exploit any residual information in the raw feature that has not been captured by the graph processing.
The overall framework of Multi-GCCF is depicted in Figure 1.

2.1 Bipartite Graph Convolutional Neural Networks

In a recommendation scenario, the user-item interaction can be readily formulated as a bipartite graph
with two types of nodes. We apply a Bipartite Graph Convolutional Neural Network (Bipar-GCN)
with one side representing user nodes and the other side representing item nodes. A figure illustrating
Bipar-GCN is included in supplementary material. Taking a similar strategy as GraphSAGE [1],
Bipar-GCN layer consists of two phases: forward sampling and backward aggregating.

After sampling the neighbors from layers 1 to K, Bipar-GCN encodes the user and item nodes by
iteratively aggregating k-hop neighborhood information via graph convolution. There are initial
embeddings eu and ev that are learned for each user u and item v. These embeddings are learned at
the same time as the parameters of the GCNs. If there are informative input features xu or xv, then
the initial embedding can be a function of the features (e.g., the output of an MLP applied to xu).
The layer-k embeddings of the target user u can be represented as:

hk
u = σ

(
Wk

u · [hk−1
u ;hk−1

N (u)]
)
, h0

u = eu , (1)

where eu are the initial user embeddings, [;] represents concatenation, σ(·) is the tanh activation
function, Wk

u is the layer-k (user) transformation weight matrix shared across all user nodes. hk−1
N (u)

is the learned neighborhood embedding. To achieve permutation invariance in the neighborhood, we

2

apply an element-wise weighted mean aggregator:

hk−1
N (u) = AGGREGATORu

({
hk−1
v , v ∈ N (u)

})
, (2)

AGGREGATORu = σ
(
MEAN

({
hk−1
v ·Qk

u, v ∈ N (u)
}))

.

Here Qk
u is the layer-k (user) aggregator weight matrix, which is shared across all user nodes at layer

k, and MEAN denotes the mean of the vectors in the argument set.

The vector representation of target item node v is generated similarly as user node but with another
set of transformation and aggregator weight matrices.

2.2 Multi-Graph Encoding Layer

MGE layer generates an additional embedding for a target node by constructing two additional graphs
and applying graph convolutional learning on them. This proximity information can make up for
the very sparse user-item interaction bipartite graph. The user and item graphs are constructed by
computing pairwise cosine similarities on the rows or columns of the rating matrix.

We generate embeddings for target nodes by aggregating the neighborhood features using a one-hop
graph convolution layer and a sum aggregator:

zu = σ
(∑

i∈N ′(u)

ei ·Mu

)
; zv = σ

(∑
j∈N ′(v)

ej ·Mv

)
. (3)

Here N ′(u) denotes the one-hop neighbourhood of user u in the user-user graph and N ′(v) denotes
the one-hop neighbourhood of item v in the item-item graph. Mu and Mv are the learnable user and
item aggregation weight matrices, respectively.

When constructing the user and item similarity graph from the rating matrix, we select thresholds
based on the cosine similarity that lead to an average degree of 10 for each graph. By merging
the outputs of the Bipar-GCN and MGE layers together, we can take advantage of the different
dependency relationships encoded by the three graphs. All three graphs can be easily constructed
from historical interaction data alone, with very limited additional computation cost.

2.3 Skip-connection with Original Node Features

We further refine the embedding with information passed directly from the original node features.
The intuition behind this is that both Bipar-GCN and MGE focus on extracting latent information
based on relationships. As a result, the impact of the initial node features becomes less dominant.
The skip connections allows the architecture to re-emphasize these features.

We pass the original features through a fully-connected layer to generate skip-connection embeddings:
su = σ(eu · Su); sv = σ(ev · Sv) . (4)

The bipartite-GCN, MGE layer and skip connections reveal latent information from three perspectives.
It is important to determine how to merge these different embeddings effectively. We empirically
find that element-wise sum performs much better than concatenation and attention (detailed ablation
studies are included in supplementary material).

2.4 Model Training

We adapt our model to allow forward and backward propagation for mini-batches of triplet pairs
{u, i, j}. To be more specific, we select unique user and item nodes u and v = {i, j} from mini-batch
pairs, then obtain low-dimensional embeddings {eu, ei, ej} after information fusion, with stochastic
gradient descent on the widely-used Bayesian Personalized Recommendation (BPR) [7] loss for
optimizing recommendation models. The objective function is as follows:

loss =
∑

(u,i,j)∈O

− log σ(e∗u · e∗i − e∗u · e∗j) + λ||Θ||22 + β(||e∗u||22 + ||e∗i ||22 + ||e∗j ||22) (5)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−)} denotes the training batch. R+ indicates observed
positive interactions. R− indicates sampled unobserved negative interactions. Θ is the model
parameter set and e∗u, e∗i , and e∗j are the learned embeddings. λ and β are regularization terms.

3

3 Experimental Evaluation

We perform experiments on four real-world datasets to evaluate our model. Further, we conduct
extensive ablation studies on each proposed component (Bipar-GCN, MGE and skip connect), which
is included in supplementary material. We also provide a visualization of the learned representation.
Parameter settings is included in supplementary material.

3.1 Datasets and Evaluation Metrics

To evaluate the effectiveness of our method, we conduct extensive experiments on four benchmark
datasets: Gowalla, Amazon-Books, Amazon-CDs and Yelp2018. These datasets are publicly accessible,
real-world data with various domains, sizes, and sparsity. For all datasets, we filter out users and
items with fewer than 10 interactions. Table 1 summarizes their statistics. For all experiments,
we evaluate our model and baselines in terms of Recall@k and NDCG@k (we report Recall@20
and NDCG@20). Recall@k indicates the coverage of true (preferred) items as a result of top-k
recommendation. NDCG@k (normalized discounted cumulative gain) is a measure of ranking quality.

Table 1: Statistics of evaluation datasets.
Dataset #User #Items #Interactions Density
Gowalla 29,858 40,981 1,027,370 0.084%
Yelp2018 45,919 45,538 1,185,065 0.056%

Amazon-Books 52,643 91,599 2,984,108 0.062%
Amazon-CD 43,169 35,648 777,426 0.051%

3.2 Baseline Algorithms

We studied the performance of the following models: classical collaborative filtering meth-
ods(BPRMF [7] and NeuMF [2]); graph neural network-based collaborative filtering methods
(GC-MC[10],PinSage [6] and NGCF [11]). Our proposed method, Multi-GCCF, contains two
graph convolution layers on the user-item bipartite graph (2-hop aggregation), and one graph con-
volution layer on top of both the user-user graph and the item-item graph to model the similarities
between user-pairs and item-pairs.

3.3 Comparison with Baselines

Table 2 reports the overall performance compared with baselines. Each result is the average perfor-
mance from 5 runs with random weight initializations. We find that Multi-GCCF consistently yields
the best performance for all datasets. More precisely, Multi-GCCF improves over the strongest base-
lines with respect to recall@20 by 9.01%, 12.19%, 5.52%, and 3.10% for Yelp2018, Amazon-CDs,
Amazon-Books and Gowalla, respectively. Multi-GCCF further outperforms the strongest baselines
by 12.41%, 15.43%, 24.54% and 6.39% on recall@20 for Yelp2018, Amazon-CDs, Amazon-Books
and Gowalla, respectively, when increasing the latent dimension. For the NDCG@20 metric, Multi-
GCCF outperforms the next best method by 5% to 25% on three datasets. Further, This suggests
that, exploiting the latent information by utilizing multiple graphs and efficiently integrating different
embeddings, Multi-GCCF ranks relevant items higher in the recommendation list.

4 Conclusion
In this paper we have presented a novel collaborative filtering procedure that incorporates multiple
graphs to explicitly represent user-item, user-user and item-item relationships. The proposed model,
Multi-GCCF, constructs three embeddings learned from different perspectives on the available data.
Extensive experiments on four real-world datasets demonstrate the effectiveness of our approach.

Table 2: The overall performance comparison. Underline indicates the second best model performance.
Asterisks denote scenarios where a Wilcoxon signed rank test indicates a statistically significant
difference between the scores of the best and second-best algorithms.

Gowalla Amazon-Books Amazon-CDs Yelp2018
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPRMF 0.1291 0.1878 0.0250 0.0518 0.0865 0.0849 0.0494 0.0662
NeuMF 0.1326 0.1985 0.0253 0.0535 0.0913 0.1043 0.0513 0.0719
GC-MC 0.1395 0.1960 0.0288 0.0551 0.1245 0.1158 0.0597 0.0741
PinSage 0.1380 0.1947 0.0283 0.0545 0.1236 0.1118 0.0612 0.0750
NGCF 0.1547 0.2237 0.0344 0.0630 0.1239 0.1138 0.0581 0.0719

Multi-GCCF (d=64) ∗0.1595 ∗0.2126 ∗0.0363 ∗0.0656 ∗0.1390 ∗0.1271 ∗0.0667 ∗0.0810
Multi-GCCF (d=128) ∗0.1649 ∗0.2208 ∗0.0391 ∗0.0705 ∗0.1543 ∗0.1350 ∗0.0686 ∗0.0835

4

References
[1] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In

Proc. Adv. Neural Inf. Proc. Systems, 2017.

[2] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural collaborative filtering. In Proc.
Int. Conf. World Wide Web, 2017.

[3] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22:89–
115, 2004.

[4] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2008.

[5] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. IEEE Computer, 42(8):30–37, 2009.

[6] Y. Qu, B. Fang, W. Zhang, R. Tang, M. Niu, H. Guo, Y. Yu, and X. He. Product-based neural
networks for user response prediction over multi-field categorical data. ACM Trans. Inf. Syst.,
37(1):5:1–5:35, 2019.

[7] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized
ranking from implicit feedback. In Proc. Conf. Uncertainty in Artificial Intelligence, 2009.

[8] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. Recommender Systems Handbook. Springer-
Verlag, Berlin, Heidelberg, 1st edition, 2010.

[9] J. B. Schafer, D. Frankowski, J. L. Herlocker, and S. Sen. Collaborative filtering recommender
systems. In The Adaptive Web, Methods and Strategies of Web Personalization, 2007.

[10] R. van den Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion. In Proc.
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2018.

[11] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua. Neural graph collaborative filtering. In
Proc. ACM Int. Conf. Research and Development in Information Retrieval, 2019.

[12] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolu-
tional neural networks for web-scale recommender systems. In Proc. ACM Int. Conf. Knowledge
Discovery & Data Mining, 2018.

5

5 Supplementary Materials

5.1 Effect of Different Information Fusion Methods

As we obtain three embeddings from different perspectives, we compare different methods to
summarize them into one vector: element-wise sum, concatenation, and attention. Table 3 shows the
experimental results for Gowalla and Amazon-CDs. We make the following observations: Summation
performs much better than concatenation and attention. Summation generates an embedding of
the same dimension as the component embeddings and does not involve any additional learnable
parameters. The additional flexibility of attention and concatenation may harm the generalization
capability of the model.

Table 3: Comparison of different information fusion methods when d = 128.
Gowalla Amazon-CDs

Recall@20 NDCG@20 Recall@20 NDCG@20
element-wise sum 0.1649 0.2208 0.1543 0.1350

concatenation 0.1575 0.2179 0.1432 0.1253
attention 0.1615 0.2162 0.1426 0.1248

5.2 Ablation Analysis

To assess and verify the effectiveness of the individual components of our proposed Multi-GCCF
model, we conduct an ablation analysis on Gowalla and Yelp2018 in Table 4. The table illustrates
the performance contribution of each component. The output embedding size is 128 for all ablation
experiments. We compare to d = 64 baselines because they outperform the d = 128 versions.

We make the following observations:

• All three main components of our proposed model, Bipar-GCN layer, MGE layer, and skip
connection, are demonstrated to be effective.

• Our designed Bipar-GCN can greatly boost the performance with even one graph convolution
layer on both the user side and the item side. Increasing the number of graph convolution
layers can slightly improve the performance.

• Both MGE layer and skip connections lead to significant performance improvement.
• Combining all three components leads to further improvement, indicating that the different

embeddings are effectively capturing different information about users, items, and user-item
relationships.

Table 4: Ablation studies.

Architecture Gowalla Yelp2018
Recall@20 Recall@20

Best baseline (d=64) 0.1547 0.0612
Best baseline (d=128) 0.1435 0.0527

1-hop Bipar-GCN 0.1572 0.0650
2-hop Bipar-GCN 0.1582 0.0661

2-hop Bipar-GCN + skip connect 0.1603 0.0675
2-hop Bipar-GCN + MGE 0.1623 0.0672

Multi-GCCF (d=128) 0.1649 0.0686

5.3 Embedding Visualization

Figure 2 provides a visualization of the representations derived from BPRMF, NGCF and Multi-
GCCF. Nodes with the same color represent all the item embeddings from one user’s clicked/visited
history, including test items that remain unobserved during training. We find that both BPRMF,
NGCF and our proposed model have the tendency to encode the items that are preferred by the
same user close to one another. However, Multi-GCCF generates tighter clusters, achieving a strong
grouping effect for items that have been preferred by the same user.

6

(a) BPRMF (b) Multi-GCCF

Figure 2: Visualization of the t-SNE transformed representations derived from BPRMF and Multi-
GCCF on Amazon-CDs. Numbers in the legend are user IDs. Points with the same color represent
the relevant items from the corresponding user.

5.4 Figure illustrate of Bipar-GCN

Figure 3: The accumulation of information in the bipartite user-item interaction graph. The circles
with a mosaic pattern are target nodes (users on the left, items on the right) that are selected from
the current training batch. Information is fused from the two-hop neighbours of a node. Only the
embeddings of target nodes are updated during each iteration of the training procedure.

5.5 Parameter Settings

We optimize all models using the Adam optimizer with the Xavier initialization. The embedding
size is fixed to 64 and the batch size to 1024, for all baseline models. Grid search is applied to
choose the learning rate and the coefficient of L2 normalization over the ranges {10−4, 10−3, 10−2,
10−1} and {10−5, 10−4, . . . , 10−1}, respectively. As in [11], for GC-MC and NGCF, we also tune
the dropout rate and network structure. Pre-training [2] is used in NGCF and GC-MC to improve
performance. We implement our Multi-GCCF model in PyTorch and use two Bipar-GCN layers
with neighborhood sampling sizes S1 = 15 and S2 = 10. The output dimension of the first layer is
fixed to 128; the final output dimension is selected from {64, 128} for different experiments. We
set the input node embedding dimension to 512. The neighborhood dropout ratio is set to 0.2. The
regularization parameters in the objective function are set to λ = 0.01 and β = 0.02.

7

	Introduction
	Methodology
	Bipartite Graph Convolutional Neural Networks
	Multi-Graph Encoding Layer
	Skip-connection with Original Node Features
	Model Training

	Experimental Evaluation
	Datasets and Evaluation Metrics
	Baseline Algorithms
	Comparison with Baselines

	Conclusion
	Supplementary Materials
	Effect of Different Information Fusion Methods
	Ablation Analysis
	Embedding Visualization
	Figure illustrate of Bipar-GCN
	Parameter Settings

