
Differentiation of Black-Box Combinatorial
Solvers

Marin Vlastelica Pogančić1∗ , Anselm Paulus1∗, Vít Musil2, Georg Martius1, Michal Rolínek1

1 Max-Planck-Institute for Intelligent Systems Tübingen, Germany
2 Università degli Studi di Firenze, Italy

{marin.vlastelica, anselm.paulus}@tuebingen.mpg.de
{georg.martius, michal.rolinek}@tuebingen.mpg.de

vit.musil@unifi.it

Abstract

Deep learning has been shown to be a powerful method for feature extraction, but
falls short in solving certain problems of combinatorial nature. Such problems
can be solved efficiently given dedicated solvers. We present a method that fuses
deep learning with black-box combinatorial solvers in an end-to-end manner,
allowing efficient gradient propagation through the solvers. We also provide both
experimental and theoretical backing of our approach.

1 Introduction

Deep learning approaches excel at learning rich feature representations, most notably in the area of
computer vision. Such representations have proven to be very useful in various problems, such as
object recognition, object detection, reinforcement learning and more.

The flexibility and composability of neural networks invite designing new types of building blocks.
This is particularly interesting when the building blocks can easily solve relevant problems that are
difficult for standard networks. Examples of such relevant problems are SAT-solving and constrained
optimization. The corresponding building blocks SATNet and OptNet were introduced in [1] and [2].

Our mission is to introduce building blocks capable of solving discrete optimization problems. The
goal is to leverage decades of successful research that led to efficient graph algorithms (for problems
such as SHORTEST PATH [3], MIN-COST-PERFECT-MATCHING, etc. [4]) as well as strong heuristical
solvers for NP-Hard problems (e.g.TRAVELING SALESMAN and many types of graph cuts).

Input (e.g. image)

NN layers / convolutions Blackbox combinatorial solver

learned

representation

Loss

solver

output

more NN layers

 (optional)

?

Figure 1: Architecture design enabled by Theorem 1. Blackbox combinatorial solvers can be naturally
embedded into a neural network.

∗These authors contributed equally.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

With our method we are able to implement a backward pass for large classes of combinatorial
optimization problems and the corresponding algorithms and solvers. Our main contribution is that
the method is tight in the two following ways:

• It operates with blackbox solvers and embeds them without any modification. In par-
ticular, one can run the most suitable solver for the task and hence get the best possible
performance in the forward pass. This is in contrast with usual techniques, that typically find
a differentiable way of solving some relaxation and thus inevitably take a hit in performance,
scalability, theoretical soundness etc.

• The computational cost of the introduced backward pass matches the cost of the forward
pass (in particular it also amounts to one call to the solver).

We provide mathematical as well as experimental validation.

2 Method

Let us first formalize the notion of a combinatorial solver. We expect the solver to receive continuous
input w ∈ W ⊆ RN (e.g. edge weights of a fixed graph) and return discrete output y from some
finite set Y (e.g. all travelling salesman tours on a fixed graph) that minimizes some cost c(w, y) (e.g.
length of the tour). More precisely, the solver maps

w 7→ y(w) such that y(w) = argmin
y∈Y

c(w, y). (1)

We will restrict ourselves to objective functions c(w, y) that are linear in w for every y.

For incorporating such a combinatorial solver into a neural network, we will think of w as output of
some intermediate layer and assume that y has some vector representation that is passed further down
the network.

The task to solve during back-propagation is the following: we receive the gradient dL/dy of the
global loss L with respect to solver output ŷ, from that we construct the linearization around the
solver output ŷ from the forward pass as f(y) = L(ŷ) + (y − ŷ)dL/dy; and are expected to return
df
(
y(w)

)
/dw = (dy/dw) · (dL/dy) = dL/dw; the gradient of the loss with respect to solver

input w.

Since Y is finite, there are only finitely many values of f
(
y(w)

)
. In other words, this function of w

is piecewise constant and the gradient is identically zero or does not exist at all (at points of jumps).
This should not come as a surprise; if one does a small perturbation to edge weights of a graph, one
usually does not change the optimal TSP tour. This has an important consequence:

The fundamental problem with differentiating through combinatorial solvers is not
the lack of differentiability; the gradient exists almost everywhere. However, this
gradient is a constant zero and as such is useless for optimization.

Accordingly, we will not rely on standard techniques for gradient estimation (see [5] for a nice survey).
Our strategy will rather be to compute the gradient of some fλ(w) which (in a precise sense) is a
continuous interpolation of f

(
y(w)

)
, where λ > 0 is a parameter controlling the trade-off between

“informativeness of gradient” and “faithfulness to the original function”.

2.1 Construction and properties of fλ

Before we give the exact definition of the function fλ, we formulate several requirements on it. This
will help us understand why fλ(w) is a reasonable replacement for f

(
y(w)

)
and, most importantly,

why its gradient allows to optimize function f . The simplest condition is the following.
Property A1. For each λ > 0, fλ is continuous and piecewise affine.

The second property describes the trade-off induced by changing the value of λ. For λ > 0, we define
sets Wλ

eq and Wλ
diff as the sets where f

(
y(w)

)
and fλ(w) coincide and where they differ, i.e.

Wλ
eq =

{
w ∈W : fλ(w) = f

(
y(w)

)}
and Wλ

diff =W \Wλ
eq.

2

f(y(w))

fλ(w)

wWλ
eqWλ

dif

g1 g2

︸ ︷︷ ︸
δ

f(y(w))

fλ(w)

w

f(y1)

f(y2)

g3

︸ ︷︷ ︸
P1

︸ ︷︷ ︸
G

Figure 2: Continuous interpolation of a piecewise constant function. Left: fλ for a small value of
λ; the set Wλ

eq is still substantial and only two interpolators g1 and g2 are incomplete. Also, all
interpolators are 0-interpolators. Right: fλ for a high value of λ; most interpolators are incomplete
and we also encounter a δ-interpolator g3 (between y1 and y2) which attains the value f(y1) δ-away
from the set P1. Despite losing some local structure for high λ, the gradient of fλ is still informative.

Property A2. The sets Wλ
diff are monotone in λ and they vanish as λ→ 0+, i.e.

Wλ1

diff ⊆W
λ2

diff for 0 < λ1 ≤ λ2 and Wλ
diff → ∅ as λ→ 0+.

In other words, Property A2 tells us that λ controls the size of the set where fλ deviates from f but
where also fλ has meaningful gradient.

In the third and final property, we want to capture the interpolation behavior of fλ. For that purpose,
we define a δ-interpolator of f . We say that g, defined on a set G ⊂ W , is a δ-interpolator of f
between y1 and y2 ∈ Y , if

• g is non-constant affine function;
• the image g(G) is an interval with endpoints f(y1) and f(y2);
• g attains the boundary values f(y1) and f(y2) at most δ-far away from where f(y(w)) does.

In particular, there is a point wk ∈ G for which g(wk) = f(yk) and dist(wk, Pk) ≤ δ,
where Pk = {w ∈W : y(w) = yk}, for k = 1, 2.

In the special case of a 0-interpolator g, the graph of g connects (in a topological sense) two
components of the graph of f

(
y(w)

)
. In the general case, δ measures displacement of the interpolator

(see also Fig. 2 for some examples). This displacement on the one hand loosens the connection to
f
(
y(w)

)
but on the other hand allows for less local interpolation which might be desirable.

Property A3. The function fλ consists of finitely many (possibly incomplete) δ-interpolators of f
on Wλ

diff where δ ≤ Cλ for some fixed C. Equivalently, the displacement is linearly controlled by λ.

Before we introduce the function fλ, we need to define a “perturbed solver” which, for given λ > 0,
maps

w 7→ yλ(w) such that yλ(w) = argmin
y∈Y

{c(w, y) + λf(y)}. (2)

We have then the following result.
Theorem 1. Let λ > 0. The function fλ defined by

fλ(w) = f
(
yλ(w)

)
− 1

λ

[
c
(
w, y(w)

)
− c
(
w, yλ(w)

)]
(3)

satisfies Properties A1, A2, A3.

Now, since fλ is ensured to be differentiable, we have

∇fλ(w) = −
1

λ

[dc
dw

(
w, y(w)

)
− dc

dw

(
w, yλ(w)

)]
. (4)

We then return ∇fλ as a loss gradient. The only part of evaluating (4) that could potentially be
computationally intensive is solving for yλ in (2). The following proposition comes to rescue.

3

...

Input

Figure 3: The TSP(k) problem. Left: Dataset illustration. Each input is a sequence of k flags and
the corresponding label is the adjacency matrix of the optimal TSP tour around the corresponding
capitals. Right: Learned locations of 10 country capitals in southeast Asia and Australia, accurately
recovering their true position.

Proposition 1. Let w ∈W be fixed. If we set w′ = w + λdL
dy (ŷ), we can compute yλ as

yλ(w) = argmin
y∈Y

c(w′, y).

In other words, yλ can be found by running the combinatorial solver on a different instance defined
by weight vector w′. Proofs of these results, along with geometrical description of fλ, can be found
in section B.

3 Globe Travelling Salesman Problem

Problem input and output. The training dataset for problem TSP(k) consists of 10000 examples
where the input for each example is a subset of k from a set of 100 country flags and the “label” is
the shortest travelling salesman tour through the capitals of the corresponding countries. The optimal
tour is represented by its adjacency matrix. On test time, the networks are presented unseen subsets
of k country flags. We consider datasets TSP(k) for k ∈ {5, 10, 20, 40}

Architecture. Each of the flags is presented to a convolutional network that produces k three-
dimensional representations. These vectors are projected onto the unit sphere in R3 which can be
seen as a world map, as shown in Fig. 3. The TSP solver is presented with a matrix of pairwise
distances of the k computed locations. The loss of the network is the Hamming distance between
the true and the predicted TSP adjacency matrix. The architecture is expected to learn the correct
representations of the flags (i.e. locations of their capitals on Earth, modulo rotations of the sphere).

Table 1: Results for Globe TSP – Full Tour Accuracy. Standard
deviations are shown with respect to five restarts.

Embedding TSP Solver ResNet18
k Train Test Train Test
5 99.7± 0.1% 98.8± 1.9% 100.0± 0.0% 1.6± 0.1%
10 99.7± 0.1% 98.7± 0.4% 98.9± 0.1% 0.0± 0.0%
20 99.2± 0.1% 98.6± 0.4% 98.8± 0.3% 0.0± 0.0%
40 80.2± 34.6% 79.5± 34.9% 94.8± 1.5% 0.0± 0.0%

Results. This architecture
not only learns to extract
the correct TSP tours but
also learns the correct rep-
resentations. Quantitative
evidence is presented in
Tab. 2, where we see that
the learned locations gener-
alize well and lead to cor-
rect TSP tours also on the
test set and also on some-
what large instances (note
that there are 39! ≈ 1046 admissible TSP tours for k = 40). The baseline architecture fails to achieve
anything but memorization of the training set. Additionally, we can extract the suggested locations
of world capitals and compare them with reality. To that end, we present Fig. 3, where the learned
locations of 10 capitals in southeast Asia are displayed.

References
[1] Po-Wei Wang, Priya L. Donti, Bryan Wilder, and Zico Kolter. SATNet: Bridging deep learning

and logical reasoning using a differentiable satisfiability solver. arXiv, 1905.12149, 2019.

4

[2] Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. arXiv, 1703.00443, 2017.

[3] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–271,
December 1959.

[4] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[5] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. arXiv, abs/1906.10652, 2019.

[6] Vladimir Kolmogorov. Blossom V: a new implementation of a minimum cost perfect matching
algorithm. Mathematical Programming Computation, 1(1):43–67, Jul 2009.

5

A Additional Experiments

A.1 MNIST Min-cost Perfect Matching

Problem input and output. The training dataset for problem PM(k) consists of 10000 examples
where the input to each example is a set of k2 digits drawn from the MNIST dataset and arranged in
a k× k grid. For computing the label, we consider the underlying k× k grid graph (without diagonal
edges) and solve a MIN-COST-PERFECT-MATCHING problem, where edge weights are given simply
by reading the two vertex digits as a two-digit number (we read downwards for vertical edges and
from left to right for horizontal edges)

The optimal perfect matching is encoded by an indicator vector for the subset of the selected edges.
This indicator vector is the label.

The test set consists of MNIST grid arrangements not used in the training set.

The mindset behind constructing the dataset is again that the input is not the “right representation”
for the solver; this right representation (i.e. digit values) should be extracted via backpropagating
through a composite architecture.

Architecture. The grid image is fed into a convolutional neural network which outputs a grid of
vertex weights. These weights are transformed into edge weights as described above and fed into
dedicated Blossom V solver [6]. The loss function is Hamming distance between solver output and
the true label.

Results. Our method outperforms the ResNet18 baseline by a high margin in generalizing to unseen
examples. The results show that even in the most trivial case of PM(4), the baseline is not capable
of good generalization, indicated by the high test error. For cases where k > 4, the baseline cannot
generalize at all to unseen examples, whereby our method does. Our method still does not achieve
the perfect score, the reason for this is that the solutions to the problem are sometimes not unique.
Therefore our method sometimes suggests one of the optimal solutions to the perfect matching
problem, but a different one than the target label.

Table 2: Preliminary Results for MNIST Min-weight perfect matching Standard deviations are
shown with respect to five restarts.

k Train Test
4 96.97± 0.94% 92.1± 1.61%
8 93.25± 1.63% 88.6± 1.69%

(a) Embedding PM Solver

k Train Test
4 100.0± 0.0% 79.6± 1.07%
8 100.0± 0.0% 0.0± 0.0%

(b) ResNet18

Figure 4: Each input is a full image of a k × k grid of digits drawn from the MNIST dataset (left).
The output produced by the architecture is an indicator vector selecting the edges for the minimum
cost perfect matching (right).

B Proofs

Proof of Proposition 1. Let us write L = L(ŷ) and ∇L = dL
dy (ŷ), for brevity. Thanks to the

linearity of c and the definition of f , we have

c(w, y) + λf(y) = wy + λ
(
L+∇L(y − ŷ)

)
= (w + λ∇L)y + λL− λ∇Lŷ = c(w′, y) + c0,

6

where c0 = λL− λ∇Lŷ and w′ = w+ λ∇L as desired. The conclusion about the points of minima
then follows.

Before we prove Theorem 1, we make some preliminary observations. To start with, due to the
definition of the solver, we have the fundamental inequality

c(w, y) ≥ c
(
w, y(w)

)
for every w ∈W and y ∈ Y . (5)

Observation 1. The function w 7→ c
(
w, y(w)

)
is continuous and piecewise linear.

Proof. Since c’s are linear and distinct, c
(
w, y(w)

)
, as their pointwise minimum, has the desired

properties.

Analogous fundamental inequality

c(w, y) + λf(y) ≥ c
(
w, yλ(w)

)
+ λf

(
yλ(w)

)
for every w ∈W and y ∈ Y (6)

follows from the definition of the solution to the optimization problem (2).

A counterpart of Observation 1 reads as follows.
Observation 2. The function w 7→ c

(
w, yλ(w)

)
+ λf

(
yλ(w)

)
is continuous and piecewise affine.

Proof. The function under inspection is a pointwise minimum of distinct affine functions w 7→
c(w, y) + λf(y) as y ranges Y .

As a consequence of above-mentioned fundamental inequalities, we obtain the following two-sided
estimates on fλ.
Observation 3. The following inequalities hold for w ∈W

f
(
yλ(w)

)
≤ fλ(w) ≤ f

(
y(w)

)
.

Proof. Inequality (5) implies that c
(
w, y(w)

)
−c
(
w, yλ(w)

)
≤ 0 and the first inequality then follows

simply from the definition of fλ. As for the second one, it suffices to apply (6) to y = y(w).

Now, let us introduce few notions that will be useful later in the proofs. For a fixed λ, W partitions
into maximal connected sets P on which yλ(w) is constant (see Fig. 5). We denote this collection of
sets byWλ and setW =W0.

For λ ∈ R and y1 6= y2 ∈ Y , we denote

Fλ(y1, y2) =
{
w ∈W : c(w, y1) + λf(y1) = c(w, y2) + λf(y2)

}
.

We write F (y1, y2) = F0(y1, y2), for brevity. For technical reasons, we also allow negative values of
λ here.

Note, that if W = RN , then Fλ is a hyperplane since c’s are linear. In general, W may just be a
proper subset of RN and, in that case, Fλ is just the restriction of a hyperplane ontoW . Consequently,
it may happen that Fλ(y1, y2) will be empty for some pair of y1, y2 and some λ ∈ R. To emphasize
this fact, we say “hyperplane in W ”. Analogous considerations should be taken into account for all
other linear objects. The note “in W ” stands for the intersection of these linear object with the set W .
Observation 4. Let P ∈ Wλ and let yλ(w) = y for w ∈ P . Then P is a convex polytope in W ,
where the facets consist of parts of finitely many hyperplanes Fλ(y, yk) in W for some {yk} ⊂ Y .

Proof. Assume that W = RN . The values of yλ may only change on hyperplanes of the form
Fλ(y, y

′) for some y′ ∈ Y . Then P is an intersection of corresponding half-spaces and therefore P
is a convex polytope. If W is a proper subset of RN the claim follows by intersecting all the objects
with W .

Observation 5. Let y1, y2 ∈ Y be distinct. If nonempty, the hyperplanes F (y1, y2) and Fλ(y1, y2)
are parallel and their distance is equal to |λ|K(y1, y2), where

K(y1, y2) =
|f(y1)− f(y2)|
‖y1 − y2‖

.

7

(a) The situation for λ = 0. We can see the
polytope P on which y(w) attains y1 ∈ Y . The
boundary of P is composed of segments of lines
F (y1, yk) for k = 2, . . . , 5.

(b) The same situation is captured for some rela-
tively small λ > 0. Each line Fλ(y1, yk) is par-
allel to its corresponding F (y1, yk) and encom-
passes a convex polytope in Wλ.

Figure 5: The familyWλ of all maximal connected sets P on which yλ is constant.

Proof. If we define a function c(w) = c(w, y1) − c(w, y2) = w(y1 − y2) and a constant C =
f(y2)− f(y1), then our objects rewrite to

F (y1, y2) = {w ∈W : c(w) = 0} and Fλ(y1, y2) = {w ∈W : c(w) = λC}.

Since c is linear, these sets are parallel and F (y1, y2) intersects the origin. Thus, the required distance
is the distance of the hyperplane Fλ(y1, y2) from the origin, which equals to |λC|/‖y1 − y2‖.

As the set Y is finite, there is a uniform upper bound K on all values of K(y1, y2). Namely

K = max
y1,y2∈Y
y1 6=y2

K(y1, y2). (7)

B.1 Proof of Theorem 1

Proof of Property A1. Now, Property A1 follows, since

fλ(w) =
1

λ

[
c
(
w, yλ(w)

)
+ λf

(
yλ(w)

)]
− 1

λ
c
(
w, y(w)

)
and fλ is a difference of continuous and piecewise affine functions.

Proof of Property A2. Let 0 < λ1 ≤ λ2 be given. We show that Wλ2
eq ⊆Wλ1

eq which is the same as
showing Wλ1

diff ⊆W
λ2

diff. Assume that w ∈Wλ2
eq , that is, by the definition of Wλ2

eq and fλ,

c
(
w, y(w)

)
+ λ2f

(
y(w)

)
= c(w, y2) + λ2f(y2), (8)

in which we denoted y2 = yλ2(w). Our goal is to show that

c
(
w, y(w)

)
+ λ1f

(
y(w)

)
= c(w, y1) + λ1f(y1), (9)

where y1 = yλ1(w) as this equality then guarantees that w ∈ Wλ1
eq . Observe that (6) applied to

λ = λ1 and y = y(w), yields the inequality “≥” in (9).

Let us show the reversed inequality. By Observation 3 applied to λ = λ1, we have

f
(
y(w)

)
≥ f(y1). (10)

8

We now use (6) with λ = λ2 and y = y1, followed by equality (8) to obtain

c(w, y1) + λ1f(y1) = c(w, y1) + λ2f(y1) + (λ1 − λ2)f(y1)
≥ c(w, y2) + λ2f(y2) + (λ1 − λ2)f(y1)
= c
(
w, y(w)

)
+ λ2f

(
y(w)

)
+ (λ1 − λ2)f(y1)

= c
(
w, y(w)

)
+ λ1f

(
y(w)

)
+ (λ2 − λ1)

[
f
(
y(w)

)
− f(y1)

]
≥ c
(
w, y(w)

)
+ λ1f

(
y(w)

)
where the last inequality holds due to (10).

Next, we have to show that Wλ
diff → ∅ as λ→ 0+, i.e. that for almost every w ∈W , there is a λ > 0

such that w /∈Wλ
diff. To this end, let w ∈W be given. We can assume that y(w) is a unique solution

of solver (1), since two solutions, say y1 and y2, coincide only on the hyperplane F (y1, y2) in W ,
which is of measure zero. Thus, since Y is finite, the constant

c = min
y∈Y

y 6=y(w)

{
c(w, y)− c

(
w, y(w)

)}
is positive. Denote

d = max
y∈Y

{
f
(
y(w)

)
− f(y)

}
. (11)

If d > 0, set λ < c/d. Then, for every y ∈ Y such that f
(
y(w)

)
> f(y), we have

λ <
c(w, y)− c

(
w, y(w)

)
f
(
y(w)

)
− f(y)

which rewrites
c
(
w, y(w)

)
+ λf

(
y(w)

)
< c(w, y) + λf(y). (12)

For the remaining y’s, (12) holds trivially for every λ > 0. Therefore, y(w) is a solution of the
minimization problem (2), whence yλ(w) = y(w). This shows that w ∈Wλ

eq as we wished. If d = 0,
then f

(
y(w)

)
≤ f(y) for every y ∈ Y and (12) follows again.

Proof of Property A3. Let y1 6= y2 ∈ Y be given. We show that on the component of the set

{w ∈W : y(w) = y1 and yλ(w) = y2} (13)

the function fλ agrees with a δ-interpolator, where δ ≤ Cλ and C > 0 is an absolute constant. The
claim follows as there are only finitely many sets and their components of the form (13) in Wλ

diff.

Let us set
h(w) = c(w, y1)− c(w, y2) for w ∈W

and
g(w) = f(y2)−

1

λ
h(w).

The condition on c tells us that h is a non-constant affine function. It follows by the definition of
F (y1, y2) and Fλ(y1, y2) that

h(w) = 0 if and only if w ∈ F (y1, y2) (14)

and
h(w) = λ

(
f(y2)− f(y1)

)
if and only if w ∈ Fλ(y1, y2). (15)

By Observation 5, the sets F and Fλ are parallel hyperplanes. Denote by G the nonempty intersection
of their corresponding half-spaces in W . We show that g is a δ-interpolator of f on G between y1
and y2, with δ being linearly controlled by λ.

We have already observed that g is the affine function ranging from f(y1) – on the set Fλ(y1, y2) –
to f(y2) – on the set F (y1, y2). It remains to show that g attains both the values f(y1) and f(y2)
at most δ-far from the sets P1 and P2, respectively, where Pk ∈ W denotes a component of the set
{w ∈W : y(w) = yk}, k = 1, 2.

9

(a) The facets of P1 consist of parts of hyperplanes
F (y1, zk) in W . Each facet F (y1, zk) has its cor-
responding shifts Fλ and F−λ, from which only
one intersects P . The polytope Pλ1 is then bounded
by those outer shifts.

(b) The interpolator g attains the value f(y1) on
a part of Fλ(y1, y2) – a border of the domain G.
The value f(y2) is attained on a part of F (y1, y2)
– the second border of the strip G.

Figure 6: The polytopes P1 and Pλ1 and the interpolator g.

Consider y1 first. By Observation 4, there are z1, . . . , z` ∈ Y , such that facets of P1 are parts of
hyperplanes F (y1, z1), . . . , F (y1, z`) in W . Each of them separates W into two half-spaces, say
W+
k andW−k , whereW−k is the half-space which contains P1 andW+

k is the other one. Let us denote

ck(w) = c(w, y1)− c(w, zk) for w ∈W and k = 1, . . . , `.

Every ck is a non-zero linear function which is negative onW−k and positive onW+
k . By the definition

of y1, we have

c(w, y1) + λf(y1) ≤ c(w, zk) + λf(zk) for w ∈ P1 and for k = 1, . . . , `,

that is
ck(w) ≤ λ

(
f(zk)− f(y1)

)
for w ∈ P1 and for k = 1, . . . , `.

Now, denote

Wλ
k =

{
w ∈W : ck(w) ≤ λ

∣∣f(zk)− f(y1)∣∣} for k = 1, . . . , `.

Each Wλ
k is a half-space in W containing W−k and hence P1. Let us set Pλ1 =

⋂`
k=1W

λ
k . Clearly,

P1 ⊆ Pλ1 (see Fig. 6). By Observation 5, the distance of the hyperplane
{
w ∈ W : ck(w) =

λ
∣∣f(zk)− f(y1)∣∣} from P1 is at most λK, where K is given by (7). Therefore, since all the facets

of Pλ1 are at most λK far from P1, there is a constant C such that each point of Pλ1 is at most Cλ far
from P1.

Finally, choose any w1 ∈ Pλ1 ∩ Fλ(y1, y2). By (15), we have g(w1) = f(y1), and by the definition
of Pλ1 , w1 is no farther than Cλ away from P1.

Now, let us treat y2 and define the set Pλ2 analogous to Pλ1 , where each occurrence of y1 is replaced
by y2. Any w2 ∈ Pλ2 ∩ F (y1, y2) has desired properties. Indeed, (14) ensures that g(w2) = f(y2)
and w2 is at most Cλ far away from P2.

10

	Introduction
	Method
	Construction and properties of f

	Globe Travelling Salesman Problem
	Additional Experiments
	MNIST Min-cost Perfect Matching

	Proofs
	Proof of Theorem 1

