
GraphMix : Regularized Training of Graph Neural
Networks for Semi-Supervised Learning

Vikas Verma1,2
∗
, Meng Qu2,3, Alex Lamb 2,3, Yoshua Bengio2,3, Juho Kannala1, Jian Tang2,4

1Aalto University, Finland
2Mila - Québec Artificial Intelligence Institute, Montréal, Canada

3Université de Montréal, Canada
4 HEC, Montréal, Canada

Abstract

We present GraphMix, a regularization technique for Graph Neural Network based
semi-supervised object classification, leveraging the recent advances in the reg-
ularization of classical deep neural networks. Specifically, we propose a unified
approach in which we train a fully-connected network jointly with the graph
neural network via parameter sharing, interpolation-based regularization and self-
predicted-targets. Our proposed method is architecture agnostic in the sense that
it can be applied to any variant of graph neural networks which applies a para-
metric transformation to the features of the graph nodes. Despite its simplicity,
with GraphMix we can consistently improve results and achieve or closely match
state-of-the-art performance using even simpler architectures such as Graph Convo-
lutional Networks, across three established graph benchmarks: the Cora, Citeseer
and Pubmed citation network datasets, as well as three newly proposed datasets :
Cora-Full, Co-author-CS and Co-author-Physics.

1 Introduction

Early work for learning from Graph structured data includes (Gori et al.; Scarselli et al., 2009) which
propose a neural network that can directly process most type of graphs e.g., acyclic, cyclic, directed,
and undirected graphs. More recent approaches include (Bruna et al., 2013; Henaff et al., 2015;
Defferrard et al., 2016; Kipf & Welling, 2016; Gilmer et al., 2017; Hamilton et al., 2017; Veličković
et al., 2018, 2019; Qu et al., 2019; Gao & Ji, 2019; Ma et al., 2019), among others. Many of these
approaches are designed for addressing the important problem of Semi-supervised learning over
graph structured data (Zhou et al., 2018). However, much of this research effort has been dedicated
to developing novel architectures.

Unlike many existing works which try to come up with the new architectures, we focus on architecture-
agnostic regularization techniques for graph neural networks based semi-supervised object classifica-
tion. Data Augmentation based regularization has been shown to be very effective in other types of
neural networks but how to apply these techniques in graph neural networks is still under-explored.
Our proposed method GraphMix 2 3is inspired by interpolation based data augmentation techniques
(Zhang et al., 2018; Verma et al., 2019a) but is changed appropriately to make it suitable for graph
structured data. Furthermore, GraphMix also utilizes the self-target-prediction (Laine & Aila, 2016;
Tarvainen & Valpola, 2017; Verma et al., 2019b; Berthelot et al., 2019) based data-augmentation. We
show that with our proposed regularization techniques, we can achieve state-of-the-art performance

∗Correspondence email: vikasverma.iitm@gmail.com, vikas.verma@aalto.fi
2code available at https://github.com/vikasverma1077/GraphMix
3Full version of paper availble at GraphMix

Workshop on Graph Representation Learning @ 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019), Vancouver, Canada.

https://arxiv.org/abs/1909.11715

even when using simpler graph neural network architectures such as Graph Convolutional Networks
(Kipf & Welling, 2017) and without incurring any significant additional computation cost.

2 Problem Definition and Preliminaries

2.1 Problem Setup

We are interested in the problem of semi-supervised object classification using graph structured data.
We can formally define such graph structured data as G = (V, E), where V represents the set of
nodes {v1, . . . , vn}, and E is the set of edges between the nodes of V .

Each node vi in the graph has a corresponding d-dimensional feature vector xi ∈ Rd. The feature
vectors of all the nodes X = [x1, . . . ,xn]

> are stacked together to form the entire feature matrix
X ∈ Rn×d. Each node belongs to one out of C classes and can be labeled with a C-dimensional
one-hot vector yi ∈ {0, 1}C . Given the labels of YL for few of the labeled nodes VL ⊂ V , the task
is to predict the the labels YU of the remaining nodes VU = V \ VL.

2.2 Graph Neural Networks

Graph Neural Networks (GNN) learn the lth layer representations of a sample i by leveraging the
representations of the samples NB(i) in the neighbourhood of. This is done by using an aggregation
function that takes as an input the representations of all the samples and the graph structure and
outputs the aggregated representation. The aggregation function can be defined using the Graph
Convolution layer (Kipf & Welling, 2017), Graph Attention Layer (Veličković et al., 2018), or any
general message passing layer (Gilmer et al., 2017). Formally, let Hl ∈ Rn×k be a matrix containing
the k-dimensional representation of n nodes in the lth layer then:

Hl+1 = a(HlW, E) (1)

where W ∈ Rk×k′
is a linear transformation matrix, k′ is the dimension of (l + 1)th layer and a is

the aggregation function that utilizes the graph structure.

2.3 Interpolation Based Regularization Techniques

Recently, interpolation based techniques have been proposed for regularizing neural networks. We
briefly describe some of these techniques here. In the context of supervised leaning, Mixup (Zhang
et al., 2018) trains a neural network on the convex combination of input and targets, where as Manifold
Mixup (Verma et al., 2019a) trains a neural network on the convex combination of the hidden states (
of a randomly chosen hidden layer) and the targets. While Mixup regularizes a neural network by
enforcing a constraint that the model output should change linearly in between the examples in the
input space, Manifold Mixup regularizes the neural network by learning better (more discriminative)
class-conditioned hidden states. Furthermore, in the context of semi-supervised learning, ICT (Verma
et al., 2019b) and MixMatch (Berthelot et al., 2019), extend the Mixup technique by computing
the predicted targets for the unlabeled data and applying the Mixup on the unlabeled data and their
corresponding predicted targets.

3 GraphMix

GraphMix augments the vanilla GNN with a Fully Connected Network (FCN) via parameter sharing.
The FCN loss is computed using the Manifold Mixup and the GNN loss is computed in the standard
way. Both of these losses are optimized in an alternating fashion during training. Manifold Mixup has
been shown to learn better features. The use of Manifold Mixup for FCN training facilitates learning
better features, which are used in the GNN training via parameter sharing. The predicted targets from
the GNN are used to augment the training set of the FCN. In this way, both FCN and GNN facilitate
each other’s learning process. At inference time, the predictions are made using only GNN. The
diagrammatic representation of GraphMix is presented in Figure 1 and the full algorithm is presented
in Algorithm 1.

2

Some implementation considerations. For Manifold Mixup training of FCN, we apply mixup only in
the hidden layer. Note that in Verma et al. (2019a), the authors recommended applying mixing in a
randomly chosen layer (which also includes the input layer) at each training update. However, we
observed under-fitting when applying mixup randomly at the input layer or hidden layer. Applying
mixup only in the input layer also resulted in underfitting and did not improve test accuracy.

The GraphMix framework can be applied to any underlying GNN as long as the underlying GNN ap-
plies parametric transformations to the node features. In our experiments, we show the improvements
over GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2018) using the GraphMix , however,
this framework can also be applied to more recent GNNs such as Graph U-Net (Gao & Ji, 2019) and
DisenGCN (Ma et al., 2019), which may facilitate in improving the state-of-the-art even further.

The performance of self-supervision based algorithms such as GraphMix is greatly affected by the
accuracy of the predicted targets. To improve the accuracy of the predicted targets, we applied
the average of the model prediction on K random perturbations of an input sample as discussed in
Section 3.1 and sharpening as described in Section 3.2. Further, we draw similarities and difference
of GraphMix w.r.t. Co-training framework in the Section 6.4.

The diagrammatic representation of GraphMix is presented in Figure 1 and the full algorithm is
presented in Algorithm 1.

3.1 Accurate Target Prediction for Unlabeled data

Recent state-of-the-art semi-supervised learning methods use a teacher model to make accurate
target predictions on unlabeled data. These predicted targets on the unlabeled data are used as "true
labels" for further training of the model. The teacher model can be realized as a temporal ensemble
of the student model (the model being trained) (Laine & Aila, 2016) or by using an Exponential
Moving Average (EMA) of the parameters of the student model (Tarvainen & Valpola, 2017). Another
recently proposed method for accurate target predictions for unlabeled data is to use the average of
the predicted targets across K random augmentations of the input sample (Berthelot et al., 2019).
Along these lines, in this work, we compute the predicted target as the average of predictions on K
drop-out versions of the input sample. We also used the EMA of the student model but it did not
improve test accuracy across all the datasets (see Section 6.3 for details).

3.2 Entropy Minimization

The entropy minimization can be also achieved implicitly by modifying the model’s prediction on
the unlabeled data such that the prediction has low entropy and using these low-entropy predictions
as targets for the further training of the model. Examples include "Pseudolabels" (Lee, 2013) and
"Sharpening" (Berthelot et al., 2019). In this work, we use Sharpening for entropy minimization.
The Sharpening function over the model prediction p(y|x, θ) can be formally defined as follows
(Berthelot et al., 2019), where T is the temperature hyperparameter and C is the number of classes:

Sharpen(pi, T) := p
1
T
i

/ C∑
j=1

p
1
T
j (2)

4 Experiments

4.1 Results

In this section, we present the results of GraphMix and compare it against several baselines. For
baselines, we choose the vanilla GCN, and the recent state-of-the art methods GAT (Veličković et al.,
2018) and GMNN (Qu et al., 2019). To underline the importance of the shared parameters between
FCN and GCN in GraphMix , we used two additional baselines: in the first one, we trained the
GCN with self-generated predicted targets, and in the second one, we trained the FCN with self-
generated predicted targets, named “GCN(with predicted-targets)” and “FCN(with predicted-targets)”
respectively in Table 1.

We observe that for Cora and Citeseer, GraphMix achieved significant improvements over the strong
baselines such as GCN, GAT and GMNN. For Pubmed, GraphMix improved upon GCN and GAT

3

Figure 1: The procedure for training with GraphMix . The Fully-Connected Network (FCN) and
the Graph Neural Network (GNN) share parameters. The FCN is trained using Manifold Mixup by
interpolating the hidden states HFCN and the corresponding labels Y . This leads to better features in
the GNN as a result of the parameter sharing. The targets predicted by the GNN for unlabeled data
are used to augment the input data for the FCN. The FCN and the GNN losses are minimized jointly
by alternate minimization.

Table 1: Results of object classification (%). [*] means the results are taken from the corresponding
papers. We conduct 10 trials and report mean and standard deviation over the trials.

Algorithm Cora Citeseer Pubmed
GCN * (Kipf & Welling, 2016) 81.5 70.3 79.0
GAT * (Veličković et al., 2018) 83.0 72.5 79.0

GMNN * (Qu et al., 2019) 83.7 73.1 81.8

GCN 81.3± 0.66 70.61± 0.22 79.86± 0.34
GCN (with predicted-targets) 82.03±0.43 73.38± 0.35 82.42± 0.36
FCN (with predicted-targets) 80.30±0.75 71.50± 0.80 77.40± 0.37

GraphMix 83.94± 0.57 74.52±0.59 80.98± 0.55

but was worse than GMNN. More interestingly, we obtained best results for Pubmed by just using the
GCN(with predicted targets). We further present results on larger datasets (Cora-Full, Co-author-CS
and Co-author-Physics) in Appendix Section 6.8 respectively.

5 Discussion

We presented GraphMix , a simple and efficient regularization technique for the graph neural net-
works. GraphMix is a general technique that can be applied to any graph neural network that uses a
parameterized transformation on the feature vector of the graph nodes. Through extensive experi-
ments, we demonstrated state-of-the-art performances or close to state-of-the-art performance using
this simple regularization technique on various benchmark datasets, more importantly, GraphMix
improves test accuracy over vanilla GNN across all the datasets, even without doing any extensive
hyperparameter search. Further, we conduct a systematic ablation study to understand the effect of
different components in the performance of GraphMix . This suggests that in parallel to designing
new architectures, exploring better regularization for graph structured data is a promising avenue for
research.

4

Acknowledgments

Authors thank Petar Veličković (Google DeepMind) and David Lopez-Paz (Facebook AI Research) for
helpful discussions and comments. Authors also thank Compute Canada for providing computational
resources used in this work.

References
Berthelot, David, Carlini, Nicholas, Goodfellow, Ian, Papernot, Nicolas, Oliver, Avital, and Raffel,

Colin. MixMatch: A Holistic Approach to Semi-Supervised Learning. arXiv e-prints, art.
arXiv:1905.02249, May 2019.

Blum, Avrim and Mitchell, Tom. Combining labeled and unlabeled data with co-training. In
Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT’ 98, pp.
92–100, New York, NY, USA, 1998. ACM. ISBN 1-58113-057-0. doi: 10.1145/279943.279962.
URL http://doi.acm.org/10.1145/279943.279962.

Bojchevski, Aleksandar and Günnemann, Stephan. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=r1ZdKJ-0W.

Bruna, Joan, Zaremba, Wojciech, Szlam, Arthur, and LeCun, Yann. Spectral networks and locally
connected networks on graphs. CoRR, abs/1312.6203, 2013.

Defferrard, Michaël, Bresson, Xavier, and Vandergheynst, Pierre. Convolutional neural networks on
graphs with fast localized spectral filtering. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon,
I., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 29, pp. 3844–3852.
2016.

Gao, Hongyang and Ji, Shuiwang. Graph u-nets. In Chaudhuri, Kamalika and Salakhutdinov, Ruslan
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2083–2092, Long Beach, California, USA, 09–15
Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/gao19a.html.

Gilmer, Justin, Schoenholz, Samuel S, Riley, Patrick F, Vinyals, Oriol, and Dahl, George E. Neural
message passing for quantum chemistry. In ICML, 2017.

Gori, Marco, Monfardini, Gabriele, and Franco, Scarselli. A new model for learning in graph domains.
IEEE International Joint Conference on Neural Networks.

Hamilton, Will, Ying, Zhitao, and Leskovec, Jure. Inductive representation learning on large graphs.
In NIPS, 2017.

Henaff, Mikael, Bruna, Joan, and LeCun, Yann. Deep convolutional networks on graph-structured
data. ArXiv, abs/1506.05163, 2015.

Kipf, Thomas N and Welling, Max. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Kipf, Thomas N and Welling, Max. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Laine, Samuli and Aila, Timo. Temporal ensembling for semi-supervised learning. CoRR,
abs/1610.02242, 2016. URL http://arxiv.org/abs/1610.02242.

Lee, Dong-Hyun. Pseudo-label : The simple and efficient semi-supervised learning method for deep
neural networks. 2013.

Ma, Jianxin, Cui, Peng, Kuang, Kun, Wang, Xin, and Zhu, Wenwu. Disentangled graph convolutional
networks. In ICML, 2019.

Qu, Meng, Bengio, Yoshua, and Tang, Jian. GMNN: Graph Markov neural networks. In Chaudhuri,
Kamalika and Salakhutdinov, Ruslan (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5241–5250,
Long Beach, California, USA, 09–15 Jun 2019. PMLR.

5

http://doi.acm.org/10.1145/279943.279962
https://openreview.net/forum?id=r1ZdKJ-0W
http://proceedings.mlr.press/v97/gao19a.html
http://arxiv.org/abs/1610.02242

Scarselli, Franco, Gori, Marco, Tsoi, Ah Chung, Hagenbuchner, Markus, and Monfardini, Gabriele.
The graph neural network model. Trans. Neur. Netw., 20(1):61–80, January 2009. ISSN 1045-9227.
doi: 10.1109/TNN.2008.2005605. URL http://dx.doi.org/10.1109/TNN.2008.2005605.

Shchur, Oleksandr, Mumme, Maximilian, Bojchevski, Aleksandar, and Günnemann, Stephan. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018. URL http://arxiv.org/
abs/1811.05868.

Tarvainen, Antti and Valpola, Harri. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. In Advances in Neural Information
Processing Systems 30, pp. 1195–1204, 2017.

van der Maaten, Laurens and Hinton, Geoffrey. Visualizing data using t-SNE. Journal of Ma-
chine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/
vandermaaten08a.html.

Veličković, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana, Liò, Pietro, and Bengio,
Yoshua. Graph attention networks. In ICLR, 2018.

Veličković, Petar, Fedus, William, Hamilton, William L, Liò, Pietro, Bengio, Yoshua, and Hjelm,
R Devon. Deep graph infomax. In ICLR, 2019.

Verma, Vikas, Lamb, Alex, Beckham, Christopher, Najafi, Amir, Mitliagkas, Ioannis, Lopez-Paz,
David, and Bengio, Yoshua. Manifold mixup: Better representations by interpolating hidden states.
In Chaudhuri, Kamalika and Salakhutdinov, Ruslan (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
6438–6447, Long Beach, California, USA, 09–15 Jun 2019a. PMLR. URL http://proceedings.
mlr.press/v97/verma19a.html.

Verma, Vikas, Lamb, Alex, Juho, Kannala, Bengio, Yoshua, and Lopez-Paz, David. Interpolation
consistency training for semi-supervised learning. In Kraus, Sarit (ed.), Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019. ijcai.org, 2019b. doi: 10.24963/ijcai.2019. URL https://doi.org/10.24963/
ijcai.2019.

Zhang, Hongyi, Cisse, Moustapha, Dauphin, Yann N., and Lopez-Paz, David. mixup: Beyond
empirical risk minimization. International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=r1Ddp1-Rb.

Zhou, Jie, Cui, Ganqu, Zhang, Zhengyan, Yang, Cheng, Liu, Zhiyuan, and Sun, Maosong. Graph
neural networks: A review of methods and applications. CoRR, abs/1812.08434, 2018. URL
http://arxiv.org/abs/1812.08434.

6

http://dx.doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://proceedings.mlr.press/v97/verma19a.html
http://proceedings.mlr.press/v97/verma19a.html
https://doi.org/10.24963/ijcai.2019
https://doi.org/10.24963/ijcai.2019
https://openreview.net/forum?id=r1Ddp1-Rb
http://arxiv.org/abs/1812.08434

6 Appendix

6.1 Visualization of the Learned Features

In this section, we present the analysis of the features learned by GraphMix for Cora dataset.
Specifically, we present the 2D visualization of the hidden states using the t-SNE (van der Maaten
& Hinton, 2008) in Figure 2a and 2b. We observe that GraphMix learns hidden states which are
better separated and condensed. We further evaluate the Soft-rank (refer to Appendix 6.2) of the
class-specific hidden states to demonstrate that GraphMix(GCN) makes the class-specific hidden
states more concentrated as shown in Figure 2c.

(a) GCN (b) GraphMix(GCN) (c) Class-specific Soft-Rank

Figure 2: 2D representation of the hidden states of Cora dataset using (a)GCN and (b)GraphMix, and
Soft-Rank of Class-specific hidden states (lower Soft-Rank reflects more concentrated class-specific
hidden states)

6.2 Soft-Rank

Let H be a matrix containing the hidden states of all the samples from a particular class. The
Soft-Rank of matrix H is defined by the sum of the singular values of the matrix divided by the
largest singular value. A lower Soft-Rank implies fewer dimensions with substantial variability and it
provides a continuous analogue to the notion of rank from matrix algebra. This provides evidence
that the concentration of class-specific states observed when using GraphMix in Figure 2 can be
measured directly from the hidden states and is not an artifact of the T-SNE visualization.

6.3 Ablation Study

Since GraphMix consists of various components, some of which are common with the existing
literature of semi-supervised learning, we set out to study the effect of various components by
systematically removing or adding a component from GraphMix . We measure the effect of the
following:

• Removing the Manifold Mixup and predicted targets from the FCN training.

• Removing the predicted targets from the FCN training.

• Removing the Manifold Mixup from the FCN training.

• Removing the Sharpening of the predicted targets.

• Removing the Average of predictions for K random perturbations of the input sample

• Using the EMA (Tarvainen & Valpola, 2017) of GNN for target prediction.

The results are presented in Table 2. We did not do any hyperparameter tuning for the ablation
study and used the best performing hyperparameters found for the results presented in the Table
1. We observe that all the components of GraphMix contribute to its performance, except for the
Pubmed dataset, for which not using the Manifold Mixup in the FCN training results in slightly
better performance. We also observe that using the EMA model (Tarvainen & Valpola, 2017) for
pseudolabel computation results in improved performance for Citeseer but decreased performance for
Pubmed. It can be the effect of not doing the hyperparameter search when adding the EMA to the
GraphMix . We leave this exploration for future work.

7

Ablation Cora Citeseer Pubmed
GraphMix 83.94±0.57 74.52±0.59 80.98±0.55

-without Manifold Mixup, without predicted targets 79.98±0.27 70.80±0.46 79.05±0.26
-without predicted-targets 81.86±0.41 71.30±0.14 79.66±0.14
-without Manifold Mixup 83.57±0.79 73.96±0.76 81.08±0.45
-no Sharpening 80.20±0.23 71.30±0.27 80.06±0.18
-no Averaging of predictions 83.32±0.27 73.47±0.33 80.52±0.59
-with EMA 83.82±0.76 74.92±0.57 80.38±0.59

Table 2: Ablation study results. We report mean and standard deviation over ten trials.

Algorithm 1 GraphMix : A procedure for improved training of Graph Neural Networks (GNN)

1: Input: A GCN: g(X,A, θ), a FCN: f(X, θ, λ) which shares parameters with the GCN. Beta distribution
parameter α for Manifold Mixup . Number of random perturbations K, Sharpening temperature T .
Consistency parameter γ. Number of epochs N . γ(t): rampup function for increasing the importance of
consistency regularization.

2: for t = 1 to N do
3: i = random(0,1) // generate randomly 0 or 1
4: if i=0 then
5: λ ∼ Beta(α, α) // Sample a mixing coefficient from Beta distribution
6: Lsup = L

(
f(XL, θ, λ), YL

)
// supervised loss from FCN using the Manifold Mixup

7: for k = 1 to K do
8: X̂U,k = RandomPerturbations(XU) // Apply kth round of random perturbation to XU

9: end for
10: ȲU = 1

K

∑
k g(Y | X̂U,k; θ,A) // Compute average predictions across K perturbations of XU

using the GCN
11: YU = Sharpen(ȲU , T) // Apply temperature sharpening to the average prediction
12: Lusup = L

(
f(XU , θ, λ), YU

)
// unsupervised loss from FCN using the Manifold Mixup

13: L = Lsup + γ(t) ∗ Lusup // Total loss is the weighted sum of supervised and unsupervised FCN
loss

14: else
15: L = L

(
g(XL, θ, A), YL

)
// Loss using the vanilla GCN

16: end if
17: end for
18: return L

6.4 Connection to Co-training

The GraphMix approach can be seen as a special instance of the Co-training framework (Blum &
Mitchell, 1998). Co-training assumes that the description of an example can be partitioned into two
distinct views and either of these views would be sufficient for learning if we had enough labeled
data. In this framework, two learning algorithms are trained separately on each view and then the
prediction of each learning algorithm on the unlabeled data is used to enlarge the training set of the
other. Our method has some important differences and similarities to the Co-training framework.
Similar to Co-training, we train two neural networks and the predictions from the GNN are used
to enlarge the training set of FCN. The important difference is that instead of using the predictions
from the FCN to enlarge the training set for the GNN, we employ parameter sharing for passing the
learned information from the FCN to the GNN. In our experiments, directly using the predictions
of the FCN for GNN training results in reduced accuracy. This is due to the fact that the number of
labeled samples for training the FCN are sufficiently low and hence the FCN does not make accurate
enough predictions. Another important difference is that unlike the co-training framework, FCN and
GNN do not use completely distinct views of the data: the FCN uses feature vectors X and the GNN
uses the feature vector and edge connectivity (X, E).

6.5 Algorithm

The algorithmic version of GraphMix is presented in Algorithm 1.

8

6.6 Datasets

We use three standard benchmark citation network datasets for semi-supervised with Graph Neural
Networks, namely Cora, Citeseer and Pubmed. In all these datasets, nodes correspond to documents
and edges correspond to citations. Node features correspond to the bag-of-words representation of
the document. Each node belongs to one of C classes. During training, the algorithm has access to
the feature vectors and edge connectivity of all the nodes but access has access to the class labels of
only few of the nodes. The statistics of these datasets as well as the number of training/validation/test
nodes is presented in Table 3.

Table 3: Dataset statistics.

Dataset # Nodes # Edges # Features # Classes # Training # Validation # Test
Cora 2,708 5,429 1,433 7 140 500 1,000

Citeseer 3,327 4,732 3,703 6 120 500 1,000
Pubmed 19,717 44,338 500 3 60 500 1,000

6.7 Implementation and Hyperparameter Details

We use the standard benchmark architecture as used in GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018) and GMNN (Qu et al., 2019), among others. This architecture has one hidden layer and
the graph convolution is applied twice : on the input layer and on the output of the hidden layer. The
FCN in GraphMix shares the parameters with the GCN.

GraphMix introduces four additional hyperparameters, namely the α parameter of Beta distribution
used in Manifold Mixup training of the FCN, the max-consistency coefficient γmax which controls the
trade-off between the supervised loss and the unsupervised loss (loss computed using the pseudolables)
of FCN, the temparature T in sharpening and the number of random perturbations K applied to the
input data for averaging of the predictions.

We conducted minimal hyperparameter seach over only α and γmax and fixed the hyperparameters
T and K to 0.1 and 10 respectively. The other hyperparameters were set to the best values for
GCN, including the learning rate, the L2 decay rate, number of units in the hidden layer etc. We
observed that GraphMix is not very sensitive to the values of α and γmax and similar values of these
hyperparameters work well across all the benchmark datasets.

For α, we searched over the values in the set [0.1, 1.0, 2.0] and found that 1.0 works best across all
the datasets. For γmax, we searched over the values in the set [1.0, 10.0, 20.0] and found that 10.0
works best for Cora and Citeseer and 1.0 works best for Pubmed. We conducted all the experiments
for 2000 epochs. The value of consistency coefficient γ (line 13 in Algorithm 1) is increased from 0
to its maximum value γmax from epoch 500 to 1000 using the sigmoid ramp-up of Mean-Teacher
(Tarvainen & Valpola, 2017). We used Adam optimizer with learning rate 0.01 and L2-decay 5e-4.
The number of units in the hidden layer was 16 in all our experiments. The dropout rate in the input
layer was set to 0.5.

6.8 Results on Larger Datasets

In this section, we provide results on three recently proposed datasets which are relatively larger
than standard benchmark datasets (Cora/Citeseer/Pubmed). Specifically, we use Cora-Full dataset
proposed in Bojchevski & Günnemann (2018) and Coauthor-CS and Coauthor-Physics datasets
proposed in Shchur et al. (2018). We took processed versions of these dataset available here 4. We
did 10 random splits of the the data into train/validation/test split. For the classes which had more
than 100 samples, we choose 20 samples per class for training, 30 samples per class for validation
and the remaining samples as test data. For the classes which had less than 100 samples, we chose
20% samples, per class for training, 30% samples for validation and the remaining for testing. For
each split we run experiments using 100 random seeds. The statistics of these datasets in presented
in Table 5 and the results are presented in Table 4. We observe that GraphMix(GCN) improves the
results over GCN for all the three datasets. We note that we did minimal hyperparameter search for

4https://github.com/shchur/gnn-benchmark

9

GraphMix(GCN) as mentioned in Section 6.8.1, and doing more rigorous hyperparameter search can
further improve the performance of GraphMix .

Table 4: Comparison of GraphMix with other methods (% test accuracy), for Cora-Full, Coauthor-CS,
Coauthor-Physics. ∗ refers to the results reported in Shchur et al. (2018).

Method Cora-Full Coauthor-CS Coauthor-Physics
GCN* 62.2±0.6 91.1±0.5 92.8±1.0
GAT* 51.9±1.5 90.5±0.6 92.5±0.9
MoNet* 59.8±0.8 90.8±0.6 92.5±0.9
GS-Mean* 58.6±1.6 91.3±2.8 93.0±0.8

GCN 60.13±0.57 91.27±0.56 92.90±0.92
GraphMix (GCN) 61.80±0.54 91.83±0.51 94.49±0.84

Table 5: Dataset statistics

Datasets Classes Features Nodes Edges
Cora-Full 67 8710 18703 62421
Coauthor-CS 15 6805 18333 81894
Coauthor-Physics 5 8415 34493 247962

6.8.1 Hyperparameter Details for Results in Table 4

For all the experiments we use the standard architecture mentioned in Section 6.7 and used Adam
optimizer with learning rate 0.001 and 64 hidden units in the hidden layer. For Coauthor-CS and
Coauthor-Physics, we trained the network for 2000 epochs. For Cora-Full, we trained the network for
5000 epochs because we observed the training loss of Cora-Full dataset takes longer to converge.

For Coauthor-CS and Coauthor-Physics: We set the input layer dropout rate to 0.5 and weight-decay
to 0.0005, both for GCN and GraphMix(GCN) . We did not conduct any hyperparameter search over
the GraphMix hyperparameters α, λmax, temparature T and number of random permutations K
applied to the input data for GraphMix(GCN) for these two datasets, and set these values to 1.0, 1.0,
0.1 and 10 respectively.

For Cora-Full dataset: We found input layer dropout rate 0.2 and weight-decay 0.0 to be the
best for both GCN and GraphMix(GCN) . For GraphMix(GCN) we fixed α, temparature T and
number of random permutations K to 1.0 0.1 and 10 respectively. For λmax, we did search over
{1.0, 10.0, 20.0} and found that 10.0 works best.

For all the GraphMix(GCN) experiments, the value of consistency coefficient γ (line 13 in Algorithm
1) is increased from 0 to its maximum value γmax from epoch 500 to 1000 using the sigmoid ramp-up
of Mean-Teacher (Tarvainen & Valpola, 2017).

10

	Introduction
	Problem Definition and Preliminaries
	Problem Setup
	Graph Neural Networks
	Interpolation Based Regularization Techniques

	GraphMix
	Accurate Target Prediction for Unlabeled data
	Entropy Minimization

	Experiments
	Results

	Discussion
	Appendix
	Visualization of the Learned Features
	Soft-Rank
	Ablation Study
	Connection to Co-training
	Algorithm
	Datasets
	Implementation and Hyperparameter Details
	Results on Larger Datasets
	Hyperparameter Details for Results in Table 4

