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Abstract

Anomaly detection has usually the objective of finding single anomalous samples
in the data. However, when faced with important real world problems such as fraud
detection and anti-money laundering, we are often more interested, given a dataset
of groups (e.g., batches of financial transactions), in assessing whether a group in
its entirety constitutes an outlier (e.g., a collective money laundering activity). This
paper introduces Group Anomaly Detection via Graph Autoencoders (GADGA),
harnessing recent progress in graph representation learning to detect anomalous
groups of points by exploiting their graph structure, rather than their raw set
representation. We experimentally analyze some properties of graph autoencoders,
informing the design decisions behind our method, and then empirically evaluate
it, showing superior performance than set-based and graph-based baselines.

1 Introduction

Anomaly detection is an extremely important task in machine learning. It consists of discriminating
inliers from outliers in a given dataset, and is paramount in countless real-world problems such
as intrusion detection, fault detection, and medical imaging [8], where annotated data is hard or
impossible to obtain. Recent progress in deep learning [33] paved the way for several breakthroughs
on this task [22, 30, 32]. However, most of the attention of the research community has been directed
at solving point anomaly detection, in which a single sample at a time (e.g., an image, a transaction) is
scrutinized in the search of anomalous behaviors. While this can be desirable for many applications,
there exist many others where an anomaly can be defined only by a group of data points. For instance,
imagine the case of money laundering detection, in which data points could correspond to different
transactions: a single transaction per-se is rarely an anomaly, or it is very difficult to be evaluated as
such; instead, one is usually more interested in detecting an anomalous group of transactions as a
whole. Another example is in high energy physics, where new particles (e.g., the Higgs boson [3])
can be found by detecting anomalous groups of collisions.

Generalizing point anomaly detection methods to the group anomaly detection task is not straightfor-
ward and can require either very unpractical assumptions about the data generating process or huge
amounts of prior knowledge, in order to take advantage of the inherent structure of a group. Indeed, a
central question in the design of a group anomaly detection method concerns the best way to leverage
data structure. Very often, the relationship between members of a group can be formalized as a graph,
for instance by assessing the similarity between its elements or by using some information about other
types of interactions among the samples. Intuitively, the graph representation is richer than a standard
set-based representation for the group. However, there is a lack of general methods for detecting
group anomalies by taking advantage of such structure in the data, and we argue that geometric
deep learning [5] can stand as a powerful tool in this sense. Indeed, recent work showed remarkable
potential on domains related to group anomaly detection; for instance, graph neural networks were
used for performing anti-money laundering [37, 38] and fake news detection [23]. These attempts
framed the problem as a classification task, and therefore they rely on the unrealistic assumption of
easy availability of labels.
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Figure 1: Schematic representation of our method. Given a group, a graph is built and then given as
an input to a Graph U-Net autoencoder, that exploits this structured representation to reconstruct each
one of the group samples (depicted as noisy digits in the figure). At training time, the loss function is
computed by summing the reconstruction error on individual instances of the group, highlighted in
the figure by using dashed lines. At test time, the loss is used as an anomaly score for the group.

In this paper, we propose Group Anomaly Detection via Graph Autoencoders (GADGA), a method for
group anomaly detection based on graph representation learning. The approach uses the reconstruction
error of a graph autoencoder, trained on unlabeled data, to assign anomaly scores to groups represented
as graphs. In designing GADGA, we leverage the insights on the empirical limitations of structure-
only graph autoencoders, obtained by running experiments on toy data, as well as careful adaptation
of the best performing graph neural network architectures.

2 Related work

Group Anomaly Detection. Sometimes referred to with the term collective [8], anomalies that are
defined starting from entire sets of samples have seldom been object of analysis in modern machine
learning. Classical approaches [35, 9, 34, 24], usually custom-made for specific types of data (e.g.,
sequences) are unfortunately not easy to run at scale. Group anomaly detection methods can rely to
some extent on anomaly detection techniques created for single samples [21, 4, 20, 13]. For instance,
methods based on the reconstruction error of different types of autoencoders [13, 22, 14] have been
employed for group anomaly detection using environmental [1] and visual [7] data.

Graph Autoencoders. Building on the idea of learning an identity function, commonly employed
in deep learning [31, 2, 22, 13], recent work adapted autoencoders to graph-structured data. A first
family of approaches focuses on the reconstruction of the adjacency matrix [16], with applications
such as link prediction [16] and graph embedding [26]. Starting from the observation that the sole
reconstruction of the structure of the network is often not sufficient, other works integrated node
features into the loss function for tasks such as shape completion [19] and node embedding [18].

3 Group Anomaly Detection via Graph Autoencoders

Group Anomaly Detection. Let X = {x1, x2, ....xN} be a dataset of instances (e.g., single RGB
images), 2X its power set and G = {g1, g2, , , , , gM} ⊆ 2X a set of groups. We assume a group g
can be represented as a graph, by means of a graph generation function h : G → G. For instance,
h can be the procedure that generates the similarity graph of the instances contained in a group g.
After being transformed by h, a group g is characterized by a node feature matrix Xg , containing the
vectors describing the members of the group individually, and an adjacency matrix Ag , summarizing
the connections among the group elements.

When performing group anomaly detection, we are interested in learning a detector either in the form
fG : G→ R or, given the graph representation provided by h, in the form fG : G → R. The output,
defined as anomaly score, is an increasing function of the probability that the corresponding input is
an anomaly according to the model. For fG to be a valid set function, some simple conditions about
permutation-invariant representations must hold [39]. Despite a function satisfying these conditions
is not difficult to learn in general, when information about the structure of the group is available in
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Class Reconstruction error AUCNormal Anomaly Normal Anomaly
Cycle Star 1.40± 0.00 34.54± 0.09 1.00
Star Cycle 1.08± 0.15 2.03± 0.00 1.00

Erdos Watts 0.38± 0.04 0.54± 0.31 0.54
Watts Erdos 0.37± 0.02 0.44± 0.10 0.50

Table 1: Results in terms of reconstruction error and AUC, using structure-only autoencoders [16].

the form of a graph, using more specialized families of functions can lead to a boost in performance.
Thus, we investigate the use of models specifically designed for graph-structured data.

Graph Autoencoders. The idea of using the reconstruction error of encoder-decoder neural net-
works trained to learn the identity function as anomaly score dates back to 1995 [13], but had no
chance of being generalized to non-euclidean data until the last years, when graph autoencoder archi-
tectures have been proposed for different applications. A first family of graph autoencoder works by
reconstructing the adjacency matrix Ag . We consider a simple method, proposed in [16], that consists
in using one or more Graph Convolutional Network (GCN) layers [15] in the encoder to obtain an
embedding Zg, then directly used for reconstructing Ag. The model is trained by minimizing the
negative log-likelihood (NLL), that can then be used as anomaly score fGAE(g) = NLL(Ag, Âg),
where Âg = σ

(
ZgZ

T
g

)
(where σ is the sigmoid function) and Zg = GCN(Xg,Ag). However, this

reconstruction error only considers the structural information contained in a group, without making
advantage of the node information. Hence, in building our method for group anomaly detection,
we make use of the recently proposed Graph U-Nets [12], which bring the ideas behind the U-Net
architecture [28] to the graph setting, interleaving a modified version of GCN [15] with graph pooling
and graph unpooling operations. This model was originally proposed for supervised learning and
evaluated on node classification, but we adapt it to be the backbone of our unsupervised autoencoder-
based anomaly detection method. We train the model by using the Frobenius norm of the difference
between the original and the reconstructed node features, using the same loss as anomaly score for a
group fUNET(g) = ‖Xg − X̂g‖F.

4 Experiments

4.1 A problem with structure-based autoencoders

As a preliminary study for the use of graph autoencoders in anomaly detection, we carry out an
analysis whose objective is to evaluate whether the reconstruction error in structure-only autoencoders
(i.e., trained only for the reconstruction of the adjacency matrix) is an appropriate anomaly score. We
test the method on two types of data. For the first one, we generate graphs by sampling them from
two fixed-topology schemes, star (in which every node apart a center one has a single connection
with the center itself) and cycle (in which every node is connected to two adjacent nodes). For the
second one, we generate random graphs using standard methods, namely the Erdős–Rényi [10] and
the Watts-Strogatz [36] models, that have been shown to share properties with real world data such as
social and biological networks.

The results of the experiment for different normal/anomalous combinations are reported in Table 1.
On the one hand, structure-only graph autoencoders seem to be able to perfectly learn a representation
for very simple graphs: when dealing with cycle and star graphs, they are able to reach perfect
performance in terms of AUROC, when, in turn, both graphs are considered as anomalies. On the
other hand, when this family of methods is faced with the more challenging, and more realistic,
anomaly detection task using random graphs, performance degrades almost to the one of random
guessing. This gives hints for a possible fundamental problem with this kind of autoencoder: we
hypothesize that both the simple structure of the decoder and the loss function are not sufficient for
learning a representation that is appropriate for anomaly detection.
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GADGA Local Outlier Factor
Ours LDP ablation Structure-only Graph2Vec Local Degree Profile Feature Averaging
0.81 0.58 0.23 0.49 0.52 0.70

Table 2: Results for group anomaly detection on the MNIST-based dataset, in terms of AUROC.
GADGA is evaluated using the U-Net model (Ours), using local degree profile node features (LDP
ablation) and a loss based on the adjacency matrix (Structure-only). LOF is tested using different
representations.

4.2 Group Anomaly Detection with Image Data

Motivated by our experiment on toy data, in GADGA, our method for group anomaly detection, we
use the more complex U-Net architecture and, most importantly, a loss function that considers the
node features. We now illustrate our experiments on image data.

Dataset. Due to the lack of standard benchmarks, we build a dataset for group anomaly detection
starting from MNIST [17]. We use the encoder of an MSE-trained MLP autoencoder in order to
extract a 128-dimensional representation for the samples. Afterwards, we create non-anomalous
groups by sampling a non-fixed number of samples from homogeneous classes. For instance, a
non-anomalous group can be composed by the representations of random images belonging to the
class 5, while another one can contain only images belonging to the class 6, and so on. Anomalous
groups are created by randomly sampling images from at least two of the available classes.

Baselines. The idea behind all the baselines is to obtain a vector representation for the group,
therefore reducing the task of group anomaly detection to point anomaly detection. The first
approach, directly based on [39], uses as vector embedding for a whole group a permutation-invariant
combination of the representations of the individual members: we encode the group g by using
the average 1

M

∑
x∈g x, where x is the representation for an image as provided by the pretrained

feature extractor. We additionally investigate two methods for obtaining a vector representation
from the graph view of a group. First, Graph2Vec [25], which uses an unsupervised procedure
for transforming graphs of arbitrary size into fixed-length vectors; then, an 8-bin histogram of the
local degree profile [6] of nodes, recently proposed as strong node classification baseline. As a
point anomaly detection method, we use Local Outlier Factor (LOF), selected as best performing
algorithm among a set of widely-used ones such as Isolation Forest [20], OC-SVM [21] and Robust
Covariance [29].

Results and discussion. Table 2 shows the group anomaly detection results in terms of AUROC
on the test set of the aforementioned dataset based on MNIST. The results clearly display GADGA
as superior. We also evaluate two ablations of our method, using local degree profile as only node
feature and structure-only autoencoders, showing two interesting points: first, that using appropriate
node features is an essential requirement when using graph representations for group anomaly
detection; second, that the intuition provided by the experiments on toy data using structure-only graph
autoencoders is verified on more difficult data. Our method also performs better than the baselines
based on the use of LOF on the different group representations. A simple set representation [39]
constitutes a strong baseline for group anomaly detection: the sole use of the graph representation
of the data is not enough to improve it. Instead, a careful use of graph representation learning, such
as the one we propose in GADGA, is required for taking advantage of this additional structural
information and obtain excellent performance.

5 Conclusion

In this paper, we presented GADGA, a group anomaly detection method based on deep graph autoen-
coders. Future work could focus on gathering and organizing real world data to serve as standard
benchmark for group anomaly detection, for instance in anti-money laundering [37]. Moreover, we
showed that deep learning on graphs has the capability of leveraging the graph structure of a group,
obtaining excellent group anomaly detection performance: therefore, it would be interesting to see
the development of other methods, based on graph representation learning, for solving this task.
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A Experiments setups

For implementing the graph neural networks in both experiments, we use Pytorch Geometric [11, 27].

Toy Data Experiment. For both types of graphs, we vary the number of nodes, randomly sampling
it in the interval [10,50]. For the autoencoder, we follow the architecture suggested in [16], using a
single-layer graph encoder with 32 channels, followed by a decoder entirely based on dot product.
We train the autoencoder for 10 epochs on a training set of 700 graph, composed of the 90% of
non-anomalous data. We optimize for the reconstruction of the adjacency matrix, quantified by the
negative log likelihood on single elements of the matrix. After training, we compute the area under
the ROC curve (AUC) on a test set of 300 graphs that is following the same distribution as the training
set, using the same loss function used for training as anomaly score. As an optimizer, we employ
Adam with default (β1, β2) and a learning rate of 0.001.

MNIST-based Experiment. For the dataset, the number of instances in a group is randomly
selected from a minimum of 10 to a maximum of 50. We use a training set of 700 groups and a
test set of 300 groups, with a fixed proportion of 0.9 for non-anomalies and anomalies. We then
implement the graph-generating function h by creating a similarity graph of the images in a group,
using a fixed number of 10 nearest neighbours and using a threshold of 0.5 for neglecting the arcs
corresponding to distant image representations. We use the U-Net autoencoder as described in the
main paper, using 3 layers with 64 channels to reconstruct the original node feature matrix. We train
the autoencoder for 100 epochs, and then use the same Frobenius norm used as a loss as an anomaly
score for the test set, using Adam with default (β1, β2) and a learning rate of 0.001.
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