
Network discovery using Reinforcement Learning

Harshavardhan Kamarthi∗ Priyesh Vijayan*† Bryan Wilder‡ Balaraman Ravindran*†

Milind Tambe§

Abstract

A serious challenge when finding influential actors in real-world social networks
is the lack of knowledge about the structure of the underlying network. Current
state-of-the-art methods rely on hand-crafted sampling algorithms to sample nodes
in a carefully constructed order and choose opinion leaders from this discovered
network to maximize influence spread in the complete network.
In this work, we propose a deep reinforcement learning framework graph neural
network modules for network discovery that automatically learns useful node and
graph representations that encode important structural properties of the network.
At training time, the method identifies portions of the network such that the nodes
selected from this sampled subgraph can effectively influence nodes in the complete
network. The learned policy can be directly applied on unseen graphs of similar
domain. We experiment with real-world social networks and show that the policies
learned by our RL agent provide a 7-23% improvement over the current state-of-
the-art method.

1 Introduction

Real-world applications of influence maximization are often limited by the high cost of collecting
network data. In particular, we are motivated in particular by the problem of using influence
maximization for HIV prevention among homeless youth [Yad+18; Wil+18a] where gathering the
social network of the youth who frequent a given homeless centre requires a week or more of effort.
Accordingly, an important direction for algorithm development is to create methods which subsample
the population by surveying only a small subset of nodes to obtain network information. Each node
that is surveyed reveals its neighbours, and the goal is to carefully select the nodes to be surveyed
to choose an influential set of seed nodes. Wilder et al. [Wil+18b] propose an algorithm motivated
by community structure and prove theoretical guarantees for graphs drawn from the stochastic
block model. Later, [Wil+18a] introduced a more practical algorithm called CHANGE based on the
friendship paradox [Fel91]. It uses a simple yet powerful sampling method: For each of the random
seeds, we query one of its neighbors picked at random.

We take a reinforcement learning approach to solve the network discovery problem and propose a
graph-based neural network architecture to learn important graph properties from training dataset via
Deep Q-learning algorithm that in turn helps it to query nodes efficiently for network discovery at
deployment. By leveraging structural information from such datasets, our approach learns policies
which can be deployed on unseen networks from similar domain.

∗Dept. of Computer Science and Engineering, Indian Institute of Technology Madras
†Robert Bosch Centre for Data Science and AI, Indian Institute of Technology Madras
‡Center for Artificial Intelligence in Society, University of Southern California
§Center for Research on Computation and Society, Harvard University

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2 Problem Description

Let the entire unknown graph be G∗ = (V ∗, E∗). Let X ⊆ V ∗ denote a vertex set and let G[X]
denote a sub-graph of G∗ induced by X . Let V (G) be the vertex set of a graph G and E(G) be edge
set of G. Let NG(u) be neighbors of vertex u in a graph G, and E(X,Y) be all edges such that it
connect a node in X and a node in Y .

Initially, we are given |S| seed nodes and a budget of T queries. When we query a node, we
discover the neighbours of the queried node. Let Gt be the sub-graph discovered after t queries
with vertex set, Vt = V (Gt). Let G0 = (S ∪NG∗(S), E(S,NG∗(S))) with S as the initial seed set.
During the t+ 1 query, we choose a node ut from Gt and observe Gt+1 = (Vt ∪NG∗(ut), E(Gt) ∪
E(NG∗(ut), {ut})). For any observed graph, we can use a standard influence maximization algorithm
(which assumes that the graph is known) as an oracle to determine the best set of nodes to activate
based on the available information. Let A = O(G) be the output of this oracle on graph G, and let
IG(A) be the expected number of influenced nodes in G on choosing A as the set of initial active
nodes. The task is to find a sequence of queries (u0, u1, . . . , uT−1) such that the discovered graph
GT is such that it maximizes the IG∗(O(GT)), i.e, we need to discover a sub-graph GT such that the
nodes selected by O in GT maximizes the number of nodes influenced in the entire graph, G∗.

(a) Problem overview

(b) Our Neural Architecture

Figure 1: Problem setup and reinforcement learning model

3 Proposed Method

3.1 Information flow model

First we discuss the mechanics of information diffusion across the network. We assume that informa-
tion flow is modelled by independent cascade model [KKT05]. We assign the same parameters to the
model as done in [Wil+18c]. Hence, we fix the diffusion probabilities for all edges as 0.1. We fix the
budget for the number of nodes to be activated at 10. Similar to setting in [Wil+18c], before we start
network discovery, we are given 5 random seed nodesR and their neighbourhood is revealed. We
have T = 5 queries to discover the graph GT using which we find the 10 nodes to activate. Thus, the
number of queries is equal to the number of random seeds (|R| = T).

3.2 A Markov Decision Process Formulation

We formulate the sequential decision task of network discovery problem discussed in Section 2 as a
MDP as follows.

State: At every time-step t, the current state is the discovered graph Gt.

Actions: Given a sub-graph Gt, we can query any of the nodes in Gt which are not yet queried. Thus,
the action space is Vt/{S ∪i≤t ui} if t > 0 or is NG∗(S) if t = 0.

Rewards: The actual reward we get after T steps is the number of nodes influenced in the entire
graph, G∗ using the discovered graph, GT which is IG∗(O(GT)). We denote this reward, which
the model receives at the end of an episode as Ri. However, the range of these values are highly

2

dependent on size and structure of the influenced network. Therefore, we can’t directly use this signal
to train with multiple graphs simultaneously.

Using multiple graphs: When using multiple networks, the reward scheme should reflect the
effectiveness of the policy across different networks of varying size and structure. We solve this
problem by directly comparing the performance of the policy with the performance of a baseline,
the state of the art algorithm CHANGE [Wil+18a] and normalize this difference with respect to the
difference between the performance of CHANGE and a lower-bound on optimal performance on the
training graph.

Rs =
IG∗(O(GT))− CHANGE(G∗)

OPT (G∗)− CHANGE(G∗)
(1)

where CHANGE(G∗) is the average number of influenced nodes when the graph is sampled using
CHANGE [Wil+18a] and OPT is the number of influenced nodes when we select the active nodes
given the knowledge of entire graph. We also add step-rewards at each step to help alleviate reward
sparsity problem and encourage the agent to learn to find larger graphs. The step-reward Rp,t at time
t is given as:

Rp,t =
|V (Gt)| − |V (Gt−1)|

|V (G∗)|
(2)

3.3 Graph representation

In our RL setup, the state at timestep t is the graph discovered at t. To obtain a rich graph (state)
representation, we leverage the recent progress in Network Representation Learning with deep
learning models to get efficient graph representations. Specifically, we use a neural network with
permutation invariant graph convolutional layers and differentiable pooling layers [Yin+18] to
obtain graph representations. In this work, we use the formulation in [KW16] for GCN layers.
While GCNs refine node features by message passing and aggregating, differential pooling seeks
to learn a global representation of the graph by aggregating node features in a hierarchical manner.
Differentiable pooling (Diffpool) [Yin+18] learn hierarchical representations of the graph, G in an
end-end differentiable manner by iteratively coarsening the graph and learning representations for the
coarsened graph at each stage. Diffpool can be used to map a graph to a single finite dimensional
representation by iteratively coarsening the input graph to a graph with a single node and extracting
features for this new one node graph.

3.4 State and action representation

The MDP formulation presents us with challenges atypical of most reinforcement learning problems.
A social network is a very structured object that can vary in size and complexity. We use Graph
convolutional layers and differentiable pooling to extract useful vector representations that learn to
encode the structural properties of the graph. The actions, which are nodes of the networks yet to be
queried, need to be represented as vectors as well.

We use a Diffpool based neural architecture shown in Figure 1b to obtain graph representation.
We used DeepWalk embeddings [PAS14] as node features for input layer. We also utilized these
embeddings for representing nodes as action input in Q-network.

3.5 Model training and deployment

For training, we can use single or multiple graphs. At start of an episode, we sample a graph from
training set. At every time-step, we choose the node to query by feeding the graph representation of
discovered graphGt and node representations of unqueried nodes to select the node vt with maximum
predicted Q-value. On recieving the reward we store the experience in replay buffer and use it for
gradient update of all weights in network including GCN and Diffpool layers. The deployment
algorithm is similar to training algorithm except we freeze the weights of trained Q-network. The
pseudocode of training algorithm is given in supplementary material.

3

3.6 Datasets

We evaluate the effectiveness of our proposed model on datasets from four different domains: 1)
Rural Networks, 2) Retweet Networks, 3) Animal Interaction Networks, 4) Homeless Networks For
each of the 3 families of networks, we divide them into train and test data as shown in Table 1a.

4 Results

The performance metric we used is improve percent. It is the percentage reduction with respect to the
gap between OPT and CHANGE (our baseline). (This is same as the scaled reward for last step of
episode (Equation 1)). The policies learned through reinforcement learning by our agent results in a
significant increase in the number of nodes influenced as shown in Table 1b.

Network category Train networks Test Networks
Rural rural1,rural2 rural3,rural4
Animal animals1,animals2 animals3, animals4

Retweet copen, occupy assad, isreal,
obama,damascus

Homeless a1,spy,mfp b1,cg1,node4,
mfp2,mfp3,spy2,spy3

(a) Train and test split for different sets of networks

Network Family improve %
Rural 23.76
Animal 26.6
Retweet 19.7
Homeless 7.91

(b) Summary of best results
(Scores are averaged test net-
works for each class)

Table 1: Experiment tables

Next, we discuss multiple ways we can improve robustness of training in the face of uncertainties
such as choosing the right training graph or overcoming lack of actual real-world network to train on.

We found that training with multiple networks gives better performance gains compared to average
performance gains received by training on single networks. We also used synthetic graphs generated
from extracting properties of training graphs(refer to supplementary for more details). Synthetic
graphs can be useful substitutes when we don’t have access to real-world social networks. They can
be used for data-augmentation as well. We saw that the improve percent scores for models using only
synthetic graphs are better than the average of the scores of models trained from individual networks.
For Homeless, Retweet and Rural networks, data augmentation improved the performance over the
model trained on only training graphs. The results are summarized in plots from Figure 2.

Figure 2: improve percent using different combinations of training datasets.(Avg. Individual: Average
score from policies learned from one of the training graphs. Syn only: Only synthetic graphs for
training. Real+Syn: Use both synthetic and actual train graphs)

Features of policies learnt Firstly, we observed that the DQN policies almost always discover
larger graphs than CHANGE does. The DQN policy tends to pick nodes of higher degree centrality
and betweenness centrality with respect to the full graph compared to CHANGE, especially during
later stages of the episode (during steps 4 and 5).

5 Conclusion

We introduce a novel deep Q-learning based method to leverage structural properties of the available
social networks to learn effective policies for the network discovery problem for influence maxi-
mization on undiscovered social networks. An interesting direction for future work is to explore
applications of our method to other network discovery problems to by altering the reward function.

4

References

[Ban+13] Abhijit Banerjee et al. “The diffusion of microfinance”. In: Science 341.6144 (2013),
p. 1236498.

[Blo+08] Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In: Journal
of statistical mechanics: theory and experiment 2008.10 (2008), P10008.

[Dav+15] Stephen Davis et al. “Spatial analyses of wildlife contact networks”. In: Journal of the
Royal Society Interface 12.102 (2015), p. 20141004.

[Fel91] Scott L Feld. “Why your friends have more friends than you do”. In: American Journal
of Sociology 96.6 (1991), pp. 1464–1477.

[Han01] Robert A. Hanneman. “Introduction to Social Network Methods”. In: 2001. Chap. 10.
[HLL83] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. “Stochastic block-

models: First steps”. In: Social networks 5.2 (1983), pp. 109–137.
[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the spread of influence

through a social network”. In: KDD. 2003, pp. 137–146.
[KKT05] David Kempe, Jon Kleinberg, and Éva Tardos. “Influential nodes in a diffusion model

for social networks”. In: International Colloquium on Automata, Languages, and Pro-
gramming. Springer. 2005, pp. 1127–1138.

[KW16] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolu-
tional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[Les+09] Jure Leskovec et al. “Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters”. In: Internet Mathematics 6.1 (2009),
pp. 29–123.

[PAS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social
representations”. In: Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM. 2014, pp. 701–710.

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository with Interac-
tive Graph Analytics and Visualization”. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence. 2015. URL: http://networkrepository.com.

[Wil+18a] Bryan Wilder et al. “End-to-end influence maximization in the field”. In: Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems. Inter-
national Foundation for Autonomous Agents and Multiagent Systems. 2018, pp. 1414–
1422.

[Wil+18b] Bryan Wilder et al. “Maximizing influence in an unknown social network”. In: Thirty-
Second AAAI Conference on Artificial Intelligence. 2018.

[Wil+18c] Bryan Wilder et al. “Maximizing influence in an unknown social network”. In: AAAI.
2018, pp. 4743–4750.

[Yad+18] Amulya Yadav et al. “Bridging the Gap Between Theory and Practice in Influence
Maximization: Raising Awareness about HIV among Homeless Youth.” In: IJCAI. 2018,
pp. 5399–5403.

[Yin+18] Zhitao Ying et al. “Hierarchical graph representation learning with differentiable pool-
ing”. In: Advances in Neural Information Processing Systems. 2018, pp. 4800–4810.

5

http://networkrepository.com

Supplementary Material

A Influence Model

To model information diffusion over the network, we use the standard independent cascade model
(ICM) [KKT03], which is the most commonly used model in the literature. In the ICM, every node is
either active or inactive. At the start of the process, every node is inactive except for the seed nodes,
S. The process unfolds over a series of discrete time steps. At every step, each newly activated node
attempts to activate each of its inactive neighbors. Each edge (u, v) is endowed with a propagation
probability pu,v , which gives the probability that u succeeds in influencing v. The process ends when
there are no newly activated nodes. Our objective is to choose a limited budget of |S| seed nodes
such that the expected number of active nodes at the end of the process is maximized.

B Network Datasets

Here, we describe in detail, the datsets used in our work.

Rural Networks We used the networks gathered by [Ban+13] to the study diffusion of micro-
finance in Indian rural households. Different household networks correspond to different rural regions.
Each of these networks models a household in a particular region as a node and connects them by an
edge if they were related by a set of possible relations such as health, finance, family, friendship, etc.
For our experimental study, we considered four such networks (rural1-4).

Retweet Networks These are information flow networks extracted from the Twitter social network.
In these networks, each node is a Twitter user, and two users are connected in a graph if one of the
users retweets the tweets of the other. We considered four such retweet networks from the online
network dataset repository [RA15] 5 viz: occupy, copen, israel, damascus. Each of these retweet
networks is related to a specific hashtag based information flow. occupy network is related to hashtags
concerning the famous "Occupy Wall Street" movement, copen is related to mentions about UN
conference held in Copenhagen. israel and damascus are concerned about tweets with political
hashtags that are related to the country Israel and the city of Damascus.

Animal Interaction Networks These networks are a part of the wildlife contact networks collected
by [Dav+15] at different sessions. They specifically studied the physical interactions between Voles
and created a contact network. In these contact networks, the animals (Voles) are modeled as nodes,
and there is an edge between them if the animals were caught together in one of the traps laid out in
the study. We use four of these contact networks for our experiments (voles1-4).

Homeless Networks We collected homeless networks from various HIV intervention campaigns
organized for homeless youth in Los Angeles. These networks are gathered from previous intervention
campaigns [Wil+18a; Wil+18b]. We considered ten of these networks for our experiments: a1, b1,
cg1, node4, mfp2, mfp3, spy2, spy3.

5http://networkrepository.com/

6

http://networkrepository.com/

Graph Nodes Edges Average degree Average
betweenness

Louvian
modularity

damascus 3052 3869 2.53 0.00135 0.784
israel 3698 4165 2.25 0.0016 0.87
rural3 203 410 4.04 0.0165 0.677
rural4 204 672 6.59 0.014 0.496
voles3 1686 4623 5.48 0.003 0.786
voles4 1218 3592 5.89 0.048 0.773
mfp2 182 263 2.89 0.018 0.765
mfp3 233 368 3.16 0.01 0.748
spy2 117 234 4 0.024 0.677
spy3 118 237 4.017 0.187 0.685
b1 188 375 3.98 0.015 0.626
node4 95 123 2.58 0.02 0.768

Table 2: Some properties of networks

7

C Training Algorithm

Algorithm 1: Train Network
Input :Train Graphs G = {G1, G2, . . . , GK}, number of episodes N , Query budget T , number of

random seeds |S|
1 Initialize DQN Qθ and target DQN Qθ′ ;
2 Initialize Prioritized Replay Buffer B;
3 for episode = 1 to N do
4 Choose a graph G from G;
5 Select random nodes from G as S;
6 V0 = S ∪NG(S);
7 Initial graph is G0 = G[V0];
8 Compute Deepwalk node embeddings for G0 as φ;
9 Get feature matrix F0, adjacency matrix A0 for G0 as S0 = (F0, A0);

10 X ← N(S);
11 for t = 0 to T − 1 do
12 With probability ε select a random node vt from X else select node

vt ← argmax
v∈X

Qθ(St, φ(v));

13 Query node vt and observe new graph Gt+1;
14 Set R← Rp,t (Eqn. 2).;
15 If t = T − 1, R← IG∗(O(GT)) +Rp,t;
16 Compute scaled influence reward Rt (Eqn. 1);
17 Compute Deepwalk node embeddings for Gt+1 as φ;
18 Get feature matrix Ft, adjacency matrix At+1 for Gt+1 as St+1 = (Ft+1, At+1);
19 X ← nodes not yet queried in Gt+1;
20 Add (St, φ(vt), Rt, St+1) to replay buffer D;
21 Sample from B and update Qθ;
22 end
23 Update target network Qθ′ with parameters of Qθ from time to time;
24 end

8

D Deployment algorithm

Algorithm 2: Deploy Network
Input :Trained network Qθ, Graph to be deployed on G, initial random seeds S, query budget T

1 V0 = S ∪NG(S);
2 Get the initial graph G[V0];
3 Compute Deepwalk node embeddings for G0 as φ;
4 Get feature matrix F0, adjacency matrix A0 for G0 as S0 = (F0, A0);
5 X ← N(S);
6 for t = 0 to T − 1 do
7 Select note vt ← argmax

v∈X
Qθ(St, φ(v));

8 Query node vt and observe new graph Gt+1;
9 Compute Deepwalk node embeddings for Gt+1 as φ;

10 Get feature matrix Ft, adjacency matrix At+1 for Gt+1 as St+1 = (Ft+1, At+1);
11 X ← nodes not yet queried in Gt+1;
12 end
13 A ← O(GT);
14 Activate nodes in A to start the influence process;

E Other sampling methods

We describe below other sampling methods previously used for network discovery problem.

1. RANDOM-GREEDY: Along with the given initial |S| seeds we query another T nodes at
random. Then from the subgraph made up of queried nodes, initial seed nodes and their
neighbors we use O to obtain A, nodes to be activated.

2. RECOMMEND: We query a node at random and its neighbors and then add the neighbor
with the maximum degree to A. We do this until we exhaust the total budget of 2T queries.
If we don’t have sufficient nodes in A then we get the other nodes from O from discovered
subgraph.

3. SNOWBALL: We start by querying a node at random and its neighbors and then adding the
neighbor with the maximum degree to A. Then we again query neighbours of the node
newly added to A and add the neighbor with the maximum degree to A. In case we have
already queried all neighbors, we again start with querying another random node. Similar to
RECOMMEND, we do this till we exhaust out query budget. Then we choose the rest of the
nodes from the greedy algorithm O on the discovered graph.

4. CHANGE [Wil+18a]: This is a recent method that was used for effective HIV intervention
campaign. It uses a simple yet powerful sampling method: For each of the random seeds, we
query one of its neighbors picked at random. The model is inspired by friendship paradox
which states that the expected degree of a random node’s neighbor is larger than the expected
degree of a random node. Again we use O to get nodes for A.

The performance of above methods are shown in Table 3.

F Synthetic Graph Generation

We discuss a simple graph generation technique based on the assumption that our social networks
have similar structures to graphs generated by stochastic block models. Real-world social networks
have densely connected components called communities [Les+09]. The nodes of the same community
are tightly connected and nodes of different communities are less frequently connected by an
edge. Stochastic Block Models(SBMs), which originated in sociology ([HLL83]), can generate
graphs that emulate such structural properties. The nodes of a graph are divided into communities
{C1, C2, . . . , Ck}. We add an edge between two nodes of the same community with probability pin
and we add an edge between two nodes of different community with probability pout.

9

Graph OPT CHANGE RANDOM-GREEDY Snowball Recommend
damascus 195.4 95.24 98.45 55.85 51.24
israel 115.2 30.6 30.9 21.0 22.63
rural3 25.2 17.4 17.1 14.48 15.11
rural4 45.4 31.5 30.9 14.68 15.25
voles3 110.6 33.7 32.38 31.64 33.89
voles4 115.7 58.9 56.5 41.72 45.93
mfp2 20.56 14.6 14.8 12.69 13.14
mfp3 23.45 16.5 16.6 14.97 15.31
spy2 21.26 16.01 15.27 14.15 15.13
spy3 21.71 16.09 15.88 14.97 15.60
b1 24.7 19.1 17.4 15.66 16.11
node4 15.84 12.85 13.2 11.40 11.59
cg1 17.02 14.17 13.9 11.86 12.16

Table 3: Influence Scores using different state-of-art sampling methods

Given a training graph, we now wish to estimate community sizes {C1, C2, . . . , Ck} and edge
probabilities pin, pout to generate a graph with similar community based properties. First, we use the
Louvain community detection algorithm ([Blo+08]) to partition the graph into communities. We find
the maximum likelihood estimate for pin and pout based on the number of edges that connect nodes
of same community and number of edges that connect nodes of different communities in the training
graph. Then, we construct SBM using the calculated parameters to generate synthetic graphs.

However, Retweet networks don’t usually resemble the stochastic block model structure. Rather, in
each of the communities detected by Louvain Algorithm, we observe that all nodes in the community
are connected to one or two nodes only (see Figure 3). Hence, to generate synthetic graphs similar
to retweet networks we tweak the SBM generation procedure. For nodes in each community, we
choose a single node in the community and connect all other nodes to that node. We call this graph
generation model as Stochastic Star Model(SSM).

(a) copen
(b) Generated by SSM

(c) Generated by
SBM(Most nodes are
isolated)

Figure 3: Difference in graphs generated by SBM and SSM for retweet networks.

We need to be careful to choose models that closely resemble properties of test networks. Table 4
shows the large difference in performance when using SBM and SSM models for training on retweet
networks.

Train graphs damascus israel
CHANGE 95.24 30.6
copen+occupy 110.8 43.6
SSM graphs 116.7 37.4
Real + SSM graphs 119.3 42.3
SBM Graphs 98.4 32.7
Real + SBM Graphs 104.2 41.9

Table 4: Comaprison of influence score for synthetic graphs generated by SBMs and SSMs on retweet
networks.

10

G Insights on policy learnt: details

G.1 Size of discovered graphs

Tables 5 and 6 provide results on the size of discovered graph (number of vertices and edges) at end
of an episode.

Train\Test rural3 rural4 Train\Test voles3 voles4 damascus israel
CHANGE 34.0, 40.2 51.3, 63.1 CHANGE 48.4,52.2 71.2,82.4 CHANGE 355.9,351 149.3,145.1
rural1 39.8,42 64.5,77.6 voles1 3.5,82.7 80.7,97.0 copen 372.0,370.2 153.8,149.1
rural4 2.7,44.5 65.3,76.7 voles2 52.4,82.8 2.8,113.2 occupy 373.6,372.65 159.8,155.0
rural1+rural2 38.2,40.5 68.6,84.1 voles1+voles2 70.7,76.1 83.6,95.5 copen+occupy 389.9,384.6 181.1,168.8
Syn only 38.4,49.3 67.5,79.8 Syn only 72.2,74.1 88.5,104.2 Syn only 410.7, 409.5 173.5,168.7
Real + Syn 38.9,40.4 75.1,85.5 Real + Syn 71.4,77.4 90.0,109.1 Real + Syn 420.5,425.5 12.5,209.7

Table 5: Size of discovered graph. (No. of vertices, No. of edges). Entries with maximum influence
scores are bold and entries with largest no. of vertices are underlined)

Train\Test b1 cg1 node4 mfp2 mfp3 spy2 spy3
CHANGE 39.28,40.4 26.45,26,6 23.84,23.7 28.3,28.1 33.1,33.2 32.8,40.6 34.7,42.1
a1 38.7,40.3 30.23,28.9 28.5,28.1 34.9,35.0 36.3,36.8 37.1,45.3 40.3,51.8
spy 43.7,44.5 31.0,30.5 29.1,27.6 36.2,36.8 34.8,35.6 36.8,46.6 36.8,46.2
mfp 41.2,44.2 31.5,29.5 28.9,28.2 33.9,34.2 37.5,38.8 39.1,46.7 36.7,45.6
Train 43.1,42.7 30.2,39.4 26.2,25.8 33.8,32.7 9.6,40.1 38.2,41.0 37.2,43.7
Train+Synth 44.5,47,3 29.5,33.1 27.2,27.8 36.2,38.9 36.1,38.2 9.5,44.2 38.1,42.9
Synth 40.9,42.5 4.8,34.5 9.8,30.3 8.6,37.5 35.1,35.3 39.2,46.4 35.9,40.8

Table 6: Size of discovered graph. (No. of vertices, No. of edges). Entries with maximum influence
scores are bold and entries with largest no. of vertices are underlined)

G.2 Observations on nodes selected

We observed two recurring events, labelled O1 and O2, during deployment on test networks:
O1: The next node to be selected from current sub-graph has minimum degree in the sub-graph.
O2: The next node selected in time step t is from set of nodes discovered only in previous step t− 1.

We found that almost all the time, if O2 occurs, O1 also does. We summarize the frequency of both
observations in Table 7.

Graph O1 O2
rural3 0.88 0.5
rural4 0.76 0.31
voles3 0.66 0.32
voles4 0.85 0.31
damascus 0.86 0.44
israel 0.87 0.28
b1 0.93 0.44
spy2 0.83 0.58

Table 7: Fraction of queries conforming to observations O1 and O2

Heuristics based on observations To verify that the behaviours O1 and O2 were beneficial for
our task, we devised two heuristics.
H1: At each step query only from the nodes with minimum degree in current sub-graph
H2: At each step query only from the nodes with minimum degree from the set of node discovered in
the previous step. If no new nodes are discovered in the previous step, choose any node not queried
in the discovered graph.

We break all ties by choosing uniformly at random. The performance of the heuristics is summarized
in Table 8.

11

Figure 4: A toy example demonstrating observations O1 and O2

Graph CHANGE H1 H2 Best-DQN
rural3 17.4 17.36 17.3 18.75
rural4 32.4 32.39 32.6 35.7
voles3 33.7 38.7 39.6 45.8
voles4 58.9 61.9 72.8 80.2
damascus 95.2 93.7 104.9 119.3
israel 30.6 30.37 34.2 43.6
b1 19.1 19.0 19.4 20.2
spy2 16.01 15.877 16.4 17.4

Table 8: Comparisons of scores of heuristics with baselines and best of DQN models for each graph

We observe that H2 outperforms CHANGE for Animals, Homeless and Retweet networks whereas
H1 performs similar to CHANGE in all networks. However, the DQN models still perform much
better than heuristics. This indicates that the model learns more complex patterns than the simple
heuristics we designed.

G.3 Properties of nodes selected by the policy

To further investigate why the heuristics and our DQN policy performs better, we look at degree
centrality and betweenness centrality of the nodes queried in the true underlying graph, (including
the nodes and edges not discovered yet).

We call that betweenness and degree centrality of a node computed on the true graph as its true
betweenness centrality and true degree centrality respectively.

In particular, we study three networks: b1 and israel. We compare the true degree centrality and true
betweenness centrality of queried nodes using CHANGE, DQN model and the heuristics discussed
above.

As we can see from Figure 5, the DQN model can recognize nodes with high full degree centrality
and full betweenness centrality. For graphs b1 and israel, H2 also picks nodes with higher full
betweenness centrality than CHANGE but we don’t see much difference in degree of nodes picked
with respect that picked by CHANGE.

For b1 and israel we further investigate how full degree and betweenness centrality vary across
timesteps for H1, H2 and Best DQN model (see Figure 6).

We observe that on average, DQN model finds nodes of high full betweenness centrality and degree
centrality, especially in the last query. Picking nodes with high true degree centrality allows access
to a larger number of nodes during discovery. Betweenness centrality is an important measure of
centrality of nodes in transportation systems, biological networks and social networks ([Han01]).
For network discovery, nodes of high true betweenness centrality could act as a bridge between
different strongly connected communities of nodes for further exploration. In relation to influence
maximization, nodes with true high betweenness centrality can allow the flow of information between
parts of the network which would otherwise be hard to access.

12

Figure 5: Average full betweenness (R) and degree(L) centrality of Full graph, nodes queried by
CHANGE, H1, H2 and Best DQN

Figure 6: Average full betweenness(L) and degree(R) centrality across timesteps for H1,H2 and DQN.
(We have added corresponding CHANGE values for reference)

13

H Influence scores for all experiments

Tables 9 and 10 show the influence scores for all experiments performed.

Train\Test rural3 rural4 voles3 voles4 damascus israel
CHANGE 17.4 31.5 CHANGE 33.7 58.9 CHANGE 95.24 30.6
rural1 18.95 33.1 voles1 42.2 75.3 copen 107.48 36.3
rural4 18.1∗ 35.2 voles2 45.3 75.5 occupy 106.2 38.7
rural1+rural2 18.2 34.1 voles1+voles2 45.11 78.9 copen+occupy 110.8 43.6
Syn only 18.72 34.2 Syn only 45.2 77.3 Syn only 116.7 37.4
Real + Syn 18.49 35.7 Real + Syn 45.8 80.2 Real + Syn 119.3 42.3

Table 9: influence scores of all experiments on Rural, Animal and Retweet networks(starred∗ values
were not statistically significant using t-test with p < 0.01)

Train\Test b1 cg1 node4 mfp2 mfp3 spy2 spy3
CHANGE 19.1 14.17 12.85 14.6 16.5 16.01 16.09
a1 19.6 14.62 13.63 15.2 17.1 17 18.2
spy 19.2∗ 14.53 13.67 15.3 16.5∗ 18 17.6
mfp 19.3∗ 14.43 13.56 15.4 17.4 19 17.8
Train 19.9 14.8 13.9 15.37 17.76 20 18.1
Train+Synth 20.2 14.98 13.83 15.95 17.7 21 18
Synth 19.4∗ 14.77 13.7 15.6 17.52 22 17.7

Table 10: influence scores of all experiments on Homeless Networks (starred∗ values were not
statistically significant using t-test with p < 0.01)

14

	Introduction
	Problem Description
	Proposed Method
	Information flow model
	A Markov Decision Process Formulation
	Graph representation
	State and action representation
	Model training and deployment
	Datasets

	Results
	Conclusion
	Influence Model
	Network Datasets
	Training Algorithm
	Deployment algorithm
	Other sampling methods
	Synthetic Graph Generation
	Insights on policy learnt: details
	Size of discovered graphs
	Observations on nodes selected
	Properties of nodes selected by the policy

	Influence scores for all experiments

