Logical Expressiveness of Graph Neural Networks

Pablo Barcelé Egor V. Kostylev Mikaél Monet
IMC, PUC & IMFD Chile University of Oxford IMFD Chile
Jorge Pérez Juan Reutter Juan-Pablo Silva
DCC, UChile & IMFD Chile DCC, PUC & IMFD Chile DCC, UChile

1 Introduction

Graph Neural Networks (GNNs) [11, 14] are a family of machine learning architectures that has
recently become popular for applications dealing with structured data, such as molecule classification
and knowledge graph completion [3, 6, 9, 15]. Recent work on the expressive power of GNNs has
established a close connection between their ability to classify nodes in a graph and the Weisfeiler-
Lehman (WL) test for checking graph isomorphism [12, 17]. Specifically, the authors of these two
papers independently observe that the classifications of nodes produced by the WL test always refines
the classification produced by any GNN, and moreover that there are GNN s that can reproduce the WL
test. These results establish that GNNs can be as powerful as the WL test for node classification.
However, this does not imply that GNNs can express any classifier that is refined by the WL test.

Our work aims to answer the following question: what are the node classifiers that can be captured
with GNNs? In this paper we look at this question from a logical perspective, restricting ourselves
to the properties expressible in FOCs, the two-variable fragment of first-order logic extended with
counting capabilities [4]. This choice is justified by a seminal result by Cai et al. [4] establishing a
tight connection between FOC5 and WL: two nodes in a graph are classified the same by the WL test
if and only if they satisfy exactly the same unary FOC; formulas. Since the expressive power of FOCy
as a declarative logical language is well-understood [4, 8], the precise relationship between FOC,
and GNNs in terms of expressivity can shed a light on the expressive power of GNNs.

To establish the relationship, we start by considering GNNs that update the feature vector of a node
by combining it with the aggregation of the vectors of its neighbors; we call these aggregate-combine
GNNs (AC-GNNs). Note that recent studies on the expressive power of GNNs concentrate mostly on
this architecture [12, 17]. On the negative side, we present some very simple FOC5 node properties
that cannot be captured by AC-GNN classifiers. On the positive side, we identify a natural fragment
of FOCs whose expressiveness is subsumed by that of AC-GNNs. This fragment corresponds
to graded modal logic [5], or, equivalently, to the description logic ALCQ, which has received
considerable attention in the knowledge representation community [1, 2]. Next we extend the AC-
GNN architecture by allowing global readouts, where in each layer we also compute a feature vector
for the whole graph and combine it with local aggregations; we call these aggregate-combine-readout
GNNs (ACR-GNNs). These networks are a special case of the ones proposed by Battaglia et al. [3] for
relational reasoning over graph representations. In this setting, we prove that each FOCy formula is
captured by an ACR-GNN classifier. Note that, besides their own value, our two results put together
indicate that readouts strictly increase the discriminative power of GNNSs.

We experimentally validate our theoretical findings by showing that, on synthetic graph data conform-
ing to a specific FOCy formula that is not in ALCQ, AC-GNNss struggle to fit the training data while
ACR-GNNSs can generalize even to graphs of sizes not seen during training.

2 Graph Neural Networks

Next we formalize the relevant GNN architecture and introduce other related notions. We concentrate
on boolean node classifiers—that is, networks that clasiify each graph node as true or false.

To simplify the presentation, we concentrate on undirected simple node colored graphs; however, all
our results generalize to directed multigraphs with self-loops and colored edges in a straightforward
way. Formally, a graph G = (V, E, ¢) consists of a set V' of nodes, a set E of (undirected) edges of
the form {v, u} for v,u € V with v # u, and a coloring ¢ : V' — Col assigning a unique color from
a finite set Col to each node. The neighborhood N¢(v) of anode v € V is the set {u | {v,u} € E}.

The most basic architecture for GNNs, which is also considered in the recent studies on GNN
expressibility [12, 17], consists of a sequence of layers that combine the features of every node with
the multiset of feature vectors of its neighbors. Formally, an aggregate-combine GNN (AC-GNN)
boolean node classifier is specified by a (positive integer) number L of layers, numbers {d;}Z
(which are also positive integers) representing the features’ dimensionlities such that dg is the number

of colors in Col, aggregation functions ‘[A(}G(i)]»f=1 with each AGGY) mapping a multiset of
rational feature vectors in R% -1 to one such vector, combining functions {COM®}Z_| mapping

each vector in R2%-1 to a vector in R%, and a classification function CLS mapping each vector in
R? to true or false. Given a graph G = (V, E, c), each layer i = 1,..., L of such a classifier A

computes feature vectors af;g) of size d; for every node v € V with the recursive formula
z() = COM® (z~V, AGGY ({z(~ | ue Na(v)})),

assuming that the initial feature vector a:v(JO) for each node v is the one-hot encoding of its color ¢(v)—

that is, the vector whose k-th dimention is 1 if ¢(v) is the color number & and 0 otherwise. Then, to

solve a node-classification problem for a node v € V, the vector asq(,L) is used as the input to CLS to

produce the output for v—that is, the (boolean) classification A(G, v) of v by A is CLS(Q:SJL)).

There are many possible aggregation and combining functions, which produce different classes of
GNNs [7, 9, 12, 17]. A simple choice is to consider the sum of the feature vectors as aggregation and

COM (21, 25) = f(21CD + 20 AD + 5D,

as the combining function, where C(Y) and A() are matrices of rational parameters and b(® is a
bias vector of rationals, all with appropriate dimensions, while f is a non-linearity function, such as
ReLU or sigmoid. We say that an AC-GNN classifier using these functions is simple. Furthermore,
we say that an AC-GNN classifier is homogeneous if all AGG® are the same and all COM® are
the same (implying that all d; are also the same). In our positive results we always construct simple
homogeneous GNNs, while our negative results hold in general (i.e., for arbitrary aggregation and
combining functions, and not necessarily homogeneous).

The Weisfeiler-Lehman (WL) test is a powerful heuristic used to solve the graph isomorphism
problem [16], or, for our purposes, to determine if the neighborhoods of two nodes in a given graph
are structurally close or not. Due to space limitations, we refer to [4] for a formal definition of the
underlying algorithm, giving only its informal description: starting from a colored graph G, the
algorithm iteratively assigns, for a certain number of rounds, a new color to every node in the graph;
the color of a node in round 7 depends only its own color in round ¢ — 1 and on the multiset of colors
of its neighbors in round ¢ — 1. An important observation is that the rounds of the WL algorithm can
be seen as the layers of an AC-GNN classifier whose aggregation and combining functions are all
injective [12, 17]. Furthermore, as the following proposition says, an AC-GNN classification can
never contradict the WL test.

Proposition 2.1 ([12, 17]). Let A be an AC-GNN classifier with L layers, G be a graph, and v, u be
nodes of G. If the WL test assigns the same color to v and u after L rounds then A(G,v) = A(G,u).

3 AC-GNNs and Logics

In this section we present our results on the relationship of AC-GNNs and fragments of first order
(FO) logic. To match the inputs and outputs of these formalisms, we concentrate on unary FO
formulas over graphs. As illustrated below, each such formula « takes a node v in a graph G and
classifies it as true or false, which is written as (G, v) = a or (G, v) } «, respectively. We then say
that an AC-GNN boolean classifier A captures a unary formula « if the classifications of 4 and «
are the same for every node v in every graph G—that is, A(G, v) = true if and only if (G, v) = a.

Next we briefly introduce first-order logic, as well as its fragment FOC,, assuming the node colors Col
as unary predicates, and the (undirected) edge relation £ as a binary predicate. Due to space

limitations, we concentrate on examples, referring to Cai et al. [4] and any textbook on logic for a
formal presentation. First, for the (unary) FO formula a(v) = R(v) A 3z(E(v,z) A B(z)) we
have (G, v) = « for all nodes v with color R (i.e., red) in a graph G that have at least one neighbor
with color B (i.e., blue). The unary formulas we consider have only one free (i.e., output) variable,
which is v in the example. However, FO formulas may arbitrarily use any number of quantified
variables, and restricting this number has an impact on the expressive power of the logic. As an
illustration, consider the following FO formula expressing that v is a red node, and there is another
node, 1, that is not connected to v and that has at least two blue neighbors, 22 and x3:

B(v) = R(v) A 3wy (=E(v, x1) A wgTas [E(x1, 22) A E(x1,23) Awg # 3 A B(x2) A B(ws)]).

The formula 3(v) uses four variables, but it is possible to find an equivalent one with just three: the
trick is to reuse variable v and replace every occurrence of x3 in 3(v) by v. However, this is as far as
we can go with this trick: 8(v) does not have an equivalent formula with less than three variables.

That being said, it is possible to extend the logic so that some properties can be expressed with even
less variables. Consider the counting quantifiers 3= for every positive integer N. Similar to how
the quantifier 3 expresses the existence of a node satisfying a property, 3= expresses the existence
of at least N different nodes satisfying a property. With 32 we can express 3(v) using only two
variables by the following formula:

v(v) = R(v) A 3z (~E(v,z) A 32%0[E(z,v) A B(v)]).

Based on this idea, the logic FOC, allows for formulas using all FO constructs and counting
quantifiers, but restricted to only two variables. Note that every FOC5 formula has an equivalent FO
formula (i.e., FOCs is a semantic fragment of FO), because counting quantifiers can be expressed
via usual quantifiers and inequalities (but at the cost of using more variables). The following result
establishes a classical connection between FOCs and the WL test.

Proposition 3.1 (Cai et al. [4]). For any graph G and nodes u,v in G, the WL test colors v and u
the same after any number of rounds iff u and v are classified the same by all FOCy unary formulas.

Having Propositions 2.1 and 3.1, one may be tempted to combine them and claim that every FOCo
formula can be captured by an AC-GNN. Yet, the following result shows that this is not the case.

Proposition 3.2. There is an FOCs unary formula that cannot be captured by any AC-GNN classifier.

One such formula is y(v), but there are infinitely many and even simpler FOC5 formulas that cannot
be captured by AC-GNNSs. Intuitively, the main problem is that each AC-GNN has only a fixed
number of layers L and hence the information of local aggregations cannot travel further than at
distance L of every node along edges in the graph. Moreover, the information cannot travel across
different connected components, and hence Proposition 3.2 may even be shown for AC-GNNs that
dispose of an arbitrary number of layers (for instance, on input graph G, one might want to run a
homogeneous AC-GNN for |G| layers).

The result of Proposition 3.2 opens up the following questions: (1) What kind of FOC, formulas can
be captured by AC-GNN boolean classifiers?, and (2) How can we extend the AC-GNN architecture
to capture all FOC, unary formulas? We provide answers to these questions in the next section.

4 ALCQ Description Logic and AC-GNN Classifiers

We start with the answer to the first question at the end of the previous section, and show that AC-
GNNs capture a well-known fragment of FOC,, namely, the one defined by graded modal logic [5],
or, equivalently, the description logic ALCQ which is fundamental for knowledge representation: for
example, the Semantic Web ontology language OWL 2 is largely based on ALCQ [13].

Again, due to space limitations we do not present ALCQ formally, concentrating on informal descrip-
tion and examples (but we give the formal definition in the appendix). Essentially, in the undirected
node-colored graph settings, ALCQ restricts unary FOCs, by forbidding several combinations of
constructs, most importantly negations of binary atoms (i.e., =E(z, y)), closed sub-formulas (i.e.,
sub-formulas without free variables), and disconnected conjunctions (such as in Jy(R(y) A B(v))).
Such a regular shape of formulas allows for a variable free syntax, which is in fact the standard in
description logics. For instance, the FO formula a(v) := R(v) A 3z(E(v,z) A B(z)) considered

above is written simply as R M 3E.B, and counting quantifiers can be used similarly. Note, however,
that FOC, formula 5(v) above cannot be equivalently written in ALCQ, because it essentially uses
binary negation. This last observation is crucial for us, because the negative result of Proposition 3.2
relies on the fact that AC-GNNss are local (in the sense described above), and ALCQ restricts FOCs by
imposing similar locality by forbidding negation, closed sub-formulas, and disconnected conjunctions.
This intuition is formalised in the following theorem, which answers our first question even for simple
and homogeneous AC-GNNss.

Theorem 4.1. Each ALCQ formula can be captured by a simple homogeneous AC-GNN classifier.

In the construction we use the piecewise linear sigmoid o (x) = max(0, min(1, z)) for each dimen-
sion in the combining functions. A key idea of the AC-GNN is that the dimensions of the feature
vectors represent the sub-formulas of the captured formula. Thus, if a feature in a node is 1 then
the node satisfies the corresponding sub-formula, and the opposite holds after evaluating L layers,
where L is the depth of the formula (which importantly does not depend on the graph). We do not
know whether ALCQ is the largest fragment of FOC, for which Theorem 4.1 holds, and leave this
question for future work.

Next, we answer our second question. To this end, we extend the AC-GNN architecture by a global
feature vector for the whole graph, which is computed on each layer by aggregating the multiset of
feature vectors of all the nodes and then used in the combining functions as a separate parameter. This
architecture is essentially the one proposed by Battaglia et al. [3]. Formally, an aggregate-combine-
readout GNN (ACR-GNN) is the same as AC-GNN except that the input vectors to { COM(V YL are
of size 3d,;_ (rather than 2d;_,) and it is additionally specified by readout functions {READ(i) e
from multisets of vectors in R%~1 to one such vector. Each layer of an ACR-GNN classifier computes

feature vectors :ch) for every node v in a graph G with the formula
z() = com® (:cgjl), AGGY (f2Y | u € Ng(v)}), READ® (fal~Y |u e G}})).

Intuitively, every layer an ACR-GNN first computes an aggregation over all the nodes in G then, for
every node v, it computes an aggregation over the neighbors of v; and finally it combines the features
of v with the aggregation over its neighbors and the aggregation over the whole graph. All the notions
about AC-GNNs extend to ACR-GNNSs in a straightforward way; for example, combination functions
of simple ACR-GNN classifiers have an additional parameter vector x5 as well as a term x5 R(*) in
the summation, for rational matrices R("). The following result answers our second question, and
complements Proposition 3.2 and Theorem 4.1.

Theorem 4.2. Each unary FOCs formula is captured by a simple homogeneous ACR-GNN classifier.

The construction is similar to that of Theorem 4.1; however, in contrast to ALCQ formulas, with
FOC; we have to deal with formulas asserting the existence of a node that is not connected to the
current node in the graph. As an intermediate step in the proof, we use a characterization of FOCy
using an extended version of graded modal logic, which was obtained in [10].

5 Preliminary Experimental Results

For the sake of the space we just briefly describe our experimental results and refer to the appendix
for the details. We consider a simple FOC; formula R(v) A 3z B(x), which is satisfied by every
red node in a graph provided that the graph contains at least one blue node (note that this is the
formula that we use in the proof of Proposition 3.2). We use synthetic data with nodes having five
different initial colors, with at least 18% of nodes in the positive class. We tested with path graphs and
Erdos-Renyi graphs with different connectivities. For the case of paths and sparse graphs, AC-GNNs
are not able to fit the training data. For dense graphs and with enough layers AC-GNNs can fit the
training and generalize. We also consider the GIN architecture [17] and it exhibits a performance
similar to AC-GNNs. In contrast, in all our experiments ACR-GNNs totally fit the training data
and generalize (100% train and test accuracy) even for graphs larger than those seen during training
which may be an indication that they are actually learning the formula. Our experiments show that
ACR-GNNs perform better than AC-GNNS specially for sparsely connected graphs and even for a
very simple FOCs property. We leave for future work the testing of more complex FOC, properties
and the comparison of ACR-GNNs and AC-GNNs with non-synthetic data.

References

(1]

(2]

(3]

(4]

(3]
(6]

(7]

(8]
(9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

[17]

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

Franz Baader and Carsten Lutz. Description logic. In Handbook of Modal Logic, pages 757-819.
North-Holland, 2007.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Flores Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Giil¢ehre,
H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen,
Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases, deep learning, and
graph networks. CoRR, abs/1806.01261, 2018.

Jin-Yi Cai, Martin Fiirer, and Neil Immerman. An optimal lower bound on the number of variables for
graph identification. Combinatorica, 12(4):389-410, 1992.

Maarten de Rijke. A Note on Graded Modal Logic. Studia Logica, 64(2):271-283, 2000.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 611 August 2017, pages 1263-1272, 2017.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large Graphs.
In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 1024-1034, 2017.

Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks.
In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017.

Carsten Lutz, Ulrike Sattler, and Frank Wolter. Modal logic and the two-variable fragment. In Proceedings
of the International Workshop on Computer Science Logic, pages 247-261. Springer, 2001.

Christian Merkwirth and Thomas Lengauer. Automatic Generation of Complementary Descriptors with
Molecular Graph Networks. J. of Chemical Information and Modeling, 45(5):1159-1168, 2005.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. In Proceedings
of the 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 —
February 1, pages 4602-4609, 2019.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz. OWL 2
Web Ontology Language Profiles (Second Edition). W3C recommendation, W3C, 2012.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
Graph Neural Network Model. IEEE Trans. Neural Networks, 20(1):61-80, 2009.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling Relational Data with Graph Convolutional Networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3—7, 2018, Proceedings, pages
593-607, 2018.

Boris Yu. Weisfeiler and Andrei A. Leman. A Reduction of a Graph to a Canonical Form and an Algebra
Arising during this Reduction. Nauchno-Technicheskaya Informatsia, 2(9):12-16, 1968. Translated from
Russian.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural Networks?
In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019.

https://www.cambridge.org/core/books/description-logic-handbook/F050683766E57EE9BB07BC01BB7A7069
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261
https://people.cs.umass.edu/~immerman/pub/opt.pdf
https://people.cs.umass.edu/~immerman/pub/opt.pdf
http://www.cs.man.ac.uk/~ezolin/dl/bib/Note_on_graded_modal_logic_(SL_2000).scan.pdf
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1706.02216
https://people.cs.umass.edu/~immerman/book/ch0_1_2.pdf
https://arxiv.org/abs/1609.02907
http://www.cs.man.ac.uk/~ezolin/dl/bib/Modal_logic_and_the_two-variable_fragment_(CSL_2001).pdf
https://pubs.acs.org/doi/10.1021/ci049613b
https://pubs.acs.org/doi/10.1021/ci049613b
https://arxiv.org/abs/1810.02244
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
https://persagen.com/files/misc/scarselli2009graph.pdf
https://persagen.com/files/misc/scarselli2009graph.pdf
https://arxiv.org/abs/1703.06103
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://arxiv.org/abs/1810.00826

A Proof of Proposition 3.2

Consider the following FOC2 node property a(v) := red(v) A 3z green(z). We will show by contradiction that
there is no AC-GNN that captures « (no matter which aggregation, combining, and final classifier functions are
considered). Indeed, assume that .4 is an AC-GNN capturing ¢, and let L be its number of layers. Consider
the graph G that is a chain of L + 2 nodes colored red, and consider the first node v in that chain. Since A
captures c, and since (G, vo) [~ @, we have that A labels vg with false, i.e., A(G, vg) = false. Now, consider
the graph G’ obtained from G by coloring the last node in the chain with green (instead of red). Then one can
easily show that .4 again labels vg by false in G’. But we have (G’, vo) = a, a contradiction.

The above proof relies on the following weakness of AC-GNN:ss: if the number of layers is fixed (i.e., does not
depend on the input graph), then the information of the color of a node u cannot travel further than at distance L
from u. Nevertheless, we can show that the same holds even when we consider AC-GNNss that dispose of an
arbitrary number of layers (for instance, one may want to run an homogeneous AC-GNN for f(|G|) layers, for a
fixed function f). Assume again by way of contradiction that A is an AC-GNN capturing « (not necessarily
with a fixed number of layers). Consider the graph G consisting of two disconnected nodes u, v, with u being
red and v being green. Then, since (G, u) = «, we have A(G, u) = 1. Now consider the graph G’ obtained
from G by changing the color of v from green to red. Observe that, since the two nodes are not connected, we
will again have A(G’,u) = 1, contradicting the fact that (G’, u) = « and that A is supposed to capture c.

By contrast, it is easy to see that this formula can be done with only one intermediate readout, using the technique
in the proof of Theorem 4.2.

B Proof of Theorem 4.1

We first define formally the logic ALCQ (or, equivalently, graded modal logic [S]) over simple undirected
node-colored graphs.

Definition B.1 (See [2]). An ALCQ formula is constructed as follows:
1. if r is one of the base colors, then r is a formula in ALCQ, and

2. if C and D are formulas, E is the neighbor relation in a graph, and n is a natural number, then C' M D,
C'U D, ~C and 3" E.C are ALCQ formulas.

We define when a node v in a graph G satisfies an ALCQ formula «, denoted by v |= «, recursively as follows:

o ifo =1, thenv |: « if and only if r is the base color of v in G,
e ifa=CnND,thenv |= «ifand only if v = C and v |= D (and similarly with C'U D and —C'), and

e if o = 3Z"E.C, then v |= « if and only if the set of nodes {u | u € Ng(v) and v = C'} has at least
size n.

Note that every ALCQ formula expresses a node property.

We can now proceed to prove Theorem 4.1. Let « be an ALCQ formula. We will construct an AC-GNN A,, that
is further simple and homogeneous. Let sub(a) = (a1, a2, . . ., ax) be an enumeration of the sub-formulas of
. The idea of the construction of A, is to have (row) feature vectors in R**¥ such that every component of
those vectors represents a different formula in sub(c). Then A, will update the feature vector ., of node v
ensuring that component ¢ of x,, gets a value 1 if and only if the formula «; is satisfied in node v. We note that
a € sub(«) and thus, there is one component of each feature vector in every node that gets a value 1 if and only
if the node satisfies «. We will then be able to use a final classification function CLS that simply extracts that
particular component. The simple homogeneous GNN A,, uses the aggregation and combine operators defined
by

¢
AGG(ml,wg,...,:pg) = sz
i=1
COM(z,y) = o(zC+yA+b)

where A,C € RE*K and b € R'™™X are defined next, and o is the hard-sigmoid activation defined by
o(u) = min(max(0,), 1), applied on each component of the feature vectors. The entries of the i-th columns
of A, C, and b depend on the sub formulas of « as follows:

Case 1: if oo; = r with r one of the base colors, then C;; = 1,

Case 2: if a; = o May then Cj; = Cpy = 1 and b; = —1,
Case 3: if a; = aj U ae then Cj; = Cpy = 1,

Case 4: if oy = —aj then Cj; = —land b; =1,

Case 5: if ay = 32" E.oj then Aj; = land b; = —n + 1,

and all other values in the i-th columns of A, C, and b are 0.

We now prove that A, indeed captures . Let GG be a colored graph. For every v € GG we consider the initial

feature vector &9 = (z1,...,xx) such z; = 1 if and only if sub-formula «; is the initial color assigned to v,
and z; = 0 otherwise. A, will iterate the aggregation and combine operators defined above for K -rounds (K
layers) to produce feature vectors x!, for every node v € G'andt = 1,..., K. Thatis
x, = COM(z!™", AGG({z! ' | E(u,v) € G})) (1)
- a(wfflc—i—b—i— > wfle) ©)
E(u,w)EG

We next prove that for every o;; € sub(a), if a; has ¢ sub-formulas, then for every 7' > t and every v € G it
holds that

(x1); = 1if (G,v) |= a;, and (z.); = 0 otherwise 3)
That is, the i-th component of ! has a 1 if and only if v satisfies cv; in G. In the rest of the proof we will be
continuously using the value of (£); whose general expression is

()i = U(i(wi_l)jcﬂ +hit Y i(mfjl)jAﬁ). ©)

j=1 E(u,w)eqG j=1

We proceed to prove (3) by induction on the number of sub-formulas of every «;. If a; has one sub-formula,
then o;; = r with r a base color. We next prove that (.); = 1 if and only if v hast 7 as its initial color. Since
a; = r we know that C;; = 1 and Cj; = 0 for every j # i (see Case 1 above). Moreover, we know that b; = 0
and Aj; = 0 for every j. Then, from Equation (4) we obtain that

(@0)i = U(Z(wg)jcﬁeriJr > Z(mﬁ)jAﬁ) = o((®0):)

j=1 E(u,w)eG j=1

Then, given that (x5); = 1 if the initial color of v is a; = r and (3); = 0 otherwise, we have that (z3); = 1

if (G,v) = ;G and (x}); = 0 otherwise. From this it is easy to prove that for every T > 1 (2); satisfies
the same property. Now assume that o; has ¢ > 1 sub-formulas, and assume that for every «; w1th less than ¢
sub-formulas the property (3) holds. Let 7" > ¢. We proceed by cases.

o Assume that a; = o May. Then Cj; = Cy; = 1 and b; = —1. Moreover for every k # j, £ we have
that C; = 0 and A,,,; = 0 for every m (see Case 2 above). Then, from Equation (4) we obtain that

()i = U((mf i +(w5*1)e—1).

Let ¢t; be the number of sub-formulas of «;. Since ¢t < ¢t and T" > ¢t we know that 7" — 1 >
t1. Then by induction hypothesis we know that (21 ~*); = 1 if and only if (G,v) | «; and
(xX™1); = 0 otherwise. Similarly, ('), = 1 if and only if (G,v) = a¢ and (2L '), = 0
otherwise. Now, since (7); = o((®X™1); + (X 1), — 1) we have that (x?); = 1 if and only if
(I=1); + (@I=1')y — 1 > 1 that can only happen if (? ~'); = (27 ~'), = 1. Then (x); = 1
if and only if (G,v) = «; and (G, v) = ay, that is, if and only if (G,v) = (a; Mae) = s, and
(xI); = 0 otherwise. This is exactly what we wanted to prove.

e The case a; = aj U a is similar to oy = o5 M .

e Assume that a;; = —vj. Then Cj; = —1 and b; = 1. Moreover for every £ # j we have that Cy; = 0
and Ay; = 0 for every k (see Case 4 above). Then, from Equation (4) we obtain that

(@) = 0(—(my 1)+ 1).

By induction hypothesis we know that (&X~'); = 1 if and only if (G, v) = «; and (2]~ 1)J =0
otherwise. Since (€7); = o(—(z2 1), + 1) we have that («); = 1if and only if 1 — (:c?, hy>1
that can only happen if (22 ~!); = 0. Then (2); = 1if and only if (G, v) F~ «;, that is, if and only
if (G,v) = —~ay, ie., if and only if (G, v) |= i, and (2); = 0 otherwise. This is exactly what we
wanted to prove.

o Assume that a; = 32" E.cy;. Then Aj; = 1 and b; = —n + 1. Moreover for every k we have that
Cvi = 0 (see Case 5 above). Then, from Equation (4) we obtain that

(@1)i = J(,n+1+ > (wgfl)j)-

E(u,w)eG

By induction hypothesis we know that (z£~!); = 1if and only if (G,v) |= «; and (L~ '); =0
otherwise. Then we can write (]); = o(—n + 1 + m) where
m = [{u| E(u,v) and (G,u) E a;}|.

Thus, we have that (]); = 1 if and only if m > n, that is if and only if there exists at least n nodes
connected with v that satisfies a;, and (2); = 0 otherwise. From that we obtain that (27); = 1 if
and only if (G,v) = (32" E.a;) = a; which is what we wanted to prove.

To complete the proof we only need to add a final classification layer after the K iterations of the aggregate and
combine layers that simply classifies a node v as 1 if the component of X corresponding to a holds a 1.

C Proof of Theorem 4.2

To prove Theorem 4.2, we will use a characterization of the unary FOC, formulas provided by [10] that uses
a specific modal logic. That logic is defined via what are called modal parameters. We adapt the definitions
of [10] to deal with simple undirected node-colored graphs.

Definition C.1. A modal parameter is an expression built from the following grammar:
SZ:id‘E|51U51|SlﬂSQ|—\S

Given an undirected colored graph G = (V, E’, c) and a node u of G, the interpretation of S on w is the
set eg(u) C V defined inductively as follows:

o if S =idtheneg(u) == {u};

o if S=Fthenes(u) = {v|{u,v} € E'};

e if S =51USsthenes(u) =eg, (u) Ueg, (u);
e if S =51 NSsthenes(u) =eg, (u) Nes,(u);

o if S=-S5"thenes(u) =V \eg(u);

Definition C.2. The modal logic EMLC consists of all the unary formulas that are built with the following
grammar:

¢ = Clor A palpr V pal=l($) =N
Where C'is a color, S is a modal parameter and N € N. The semantics of the first 4 constructs is defined as
expected, and for an undirected colored graph G' = (V, E, ¢) and node u € V, we have (G, u) |= (S)ZV o iff
there exist at least NV nodes v in 5 (u) such that (G, v) |= ¢.

Example C.3. On an undirected graph G = (V, E, ¢)), the EMLC formula (- E)=2((E)=*green) holds on a
node u € V if u has at least two nonadjacent nodes v (and since our graphs have no self-loops, v could be w)
such that v has at least three green neighbors.

The following can be obtained from [10]:

Theorem C.4 ([10, Theorem 1]). For every ¢ € EMULC, there exists an equivalent FOCo unary formula.
Conversely, for every unary FOCs formula, there exists an equivalent EMLC formula.'

In order to simplify the proof, we will use the following observation:

Observation C.5. Let ¢ be an EMLC formula. Then there exists an EM LC formula ¢ equivalent to ¢ such
that each modal parameter appearing in ¢’ is one of the following:

a) id; thus representing the current node;
b) FE; thus representing the neighbours of the current node;

¢) —E N —id; thus representing the nodes distinct from the current node and that are not neighbours of the
current node;

"In fact, [10] shows this for FO2 without counting quantifiers and for EMLC without counting, but an
inspection of the proofs reveals that the result extends to counting quantifiers.

d) id U E; thus representing the current node and its neighbors;
e) —id; thus representing all the nodes distinct from the current node:

f) —FE; thus representing the nodes that are not neighbours of the current node (note that this includes the
current node);

g) E U —E; thus representing all the nodes;

h) E N —FE; thus representing the emptyset.
Proof. Direct by case by a tedious case analysis. O

We are now ready to proceed with the proof of Theorem 4.2. The proof is similar to that of Theorem 4.1.
Let ¢ be an EMLC formula equivalent to the targeted FOCo unary formula that is of the form givem by
Observation C.5, and let sub(y) = (¢1, @2, ..., k) be an enumeration of the sub-formulas of . We will
build a simple homogeneous ACR-GNN A, computing feature vectors &, in R ¥ such that every component
of those vectors represents a different formula in sub(y). In addition, we will also have feature vectors x&
in R ¥ The GNN A, will update the feature vector x,, of node v ensuring that component ¢ of x,, gets a
value 1 if and only if the formula ¢; is satisfied in node v. Similarly, ¢ will be updated to make sure that every
component represents the number of nodes in G that satisfy the corresponding subformula. The readouts and
aggregate simply sum the input feature vectors. When ¢; is of the form described by the cases (1-4) in the proof
of Theorem 4.1, we define the i-th columns of the matrices A, C' and bias b as in that proof, and the i-th column
of R (the matrix that multiplies the global readout feature vector) is full of zeros. We now explain how we define
their i-th columns when ¢; is of the form (S) 2N 5, according to the 8 cases given by Observation C.5:

Case a: if p; = (i

(
Case b: if p; = (
Case c: if p; = (-EN=id)=Np,, then Rj; = 1and Cj; = Aj; = —land b= —N + 1;
Case d: if ¢; = (idU E)2Ng;, then Cj; = land Aj; = land b= —N + 1;

Casee: if ¢; = (

Case f: if p; = (=E)2N;, then Rj; = land Aj; = —landb= —N + 1,

Case g: if ;i = (

Case h: if ¢; = (E N —E)ZN;, then nothing,

and all other values in the i-th columns of A, C, R, and b are 0. The proof then goes on exactly as in that of
Theorem 4.1.

D Details on the Experimental Setting and Results

We consider two classes of graphs: (1) paths: connected graphs in which every node in the graph has degree 2
except for two nodes (the extreme nodes) that have degree 1, and (2) Erdos-Renyi graphs: graphs generated
randomly specifying the number of nodes and edges in the graph. For this last case, we consider as a extreme
cases the case in which graphs contain the same number of nodes and edges and graphs in which the number of
edges is twice the number of nodes.

For training and testing we constructed three sets of graphs for each case: (a) Train set containing 5k graphs
with nodes between 50 and 100, (b) Test set, same size, containing 500 graphs with the same number of nodes
as in the train set (between 50 and 100 nodes), and (c) Test set, bigger size, containing 500 graphs with nodes
between 100 and 200.

All graphs contain up to 5 different colors, and every node is labeled according to the formula R(v) A 3xB(x)
(the node is red and there exists at least one blue node in the graph). To force the models to try to learn
the formula, in every set (train and test) we consider 50% of graphs not containing any blue node, and 50%
containing at least one blue node. The number of blue nodes in every graph is fixed to a small number (typically
less than 5 nodes). Moreover, to ensure that there is a significant number of nodes satisfying the formula, we
force graphs to contain at least 1/4 of its nodes colored with red. The colors of all the other nodes are distributed
randomly. With all these restrictions, every dataset that we created had at least a 18% of nodes satisfying the
property. For the case of the path graphs, and to mimic the impossibility proof in Proposition 3.2 we put the blue
nodes in one of the “sides” of the path, and the red nodes in the other “side”. More specifically, consider the path
graph with 100 nodes v1, . .., v100 such that v; is connected with v;41 for every i € {1,...,99}. Then, we
ensure that every blue node appears in one of vy, . . ., vso and every red node appears in one of vs1, . .., v100-

Path Erdos-Renyi

Train Acc. Test Acc. Train Acc. Test Acc.

same-size bigger same-size bigger
AC-2 0.872 0.871 0.877 0.823 0.826 0.790
AC-5 0.887 0.886 0.892 0.951 0.949 0.929
AC-7 0.892 0.892 0.897 0.967 0.965 0.958
GIN-2 0.865 0.864 0.870 0.803 0.805 0.780
GIN-5 0.861 0.861 0.867 0.830 0.831 0.817
GIN-7 0.863 0.864 0.870 0.818 0.819 0.813
ACR 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: Results on synthetic data for nodes labeled according to the FOC5, formula R(v) A JzB(x).

Erdos-Renyi + 20% Erdos-Renyi + 50% Erdos-Renyi + 100%
Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

same-size bigger same-size bigger same-size bigger
AC-2 0.810 0.807 0.778 0.829 0.835 0.791 0.861 0.864 0.817
AC-5 0.940 0.937 0.901 0.975 0.971 0.958 0.994 0.994 0.993
AC-7 0.963 0.961 0.946 0.983 0.978 0.981 0.995 0.995 0.995
GIN-2 0.797 0.795 0.771 0.813 0.818 0.784 0.838 0.840 0.803
GIN-5 0.838 0.836 0.819 0.846 0.847 0.833 0.841 0.844 0.838
GIN-7 0.838 0.840 0.803 0.841 0.844 0.838 0.784 0.788 0.773
ACR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Detailed results for Erdos-Renyi synthetic graphs with different connectivities.

We tested AC-GNNs, GINs [17], and ACR-GNNs for 2, 5, and 7 layers and with several configurations for
the aggregate and combine (Table 1). We report the accuracy on the best configuration that we found for the
aggregation and combination functions. Accuracy in our experiments is computed as the total number of nodes
correctly classified among all nodes in all the graphs in the dataset. We run 10 epochs with the Adam optimizer
and we did not use any regularization.> For both types of graphs, ACR-GNNs completely fit the training data
and generalize even for graphs of size bigger compared to the ones seen during training (100% train and test
accuracy). ACR-GNN with 2 layers already showed perfect performance (ACR in Table 1). This was what we
expected given the simplicity of the property that we are checking. In contrast, AC-GNNs and GINs (shown in
Table 1 as AC-k and GIN-k representing AC-GNNs and GINs with & layers) struggle to fit the data. For the case
of the path graph, they were not able to completely fit the train data even if 7 layers are allowed. For the case of
the random graphs, the performance with 7 layers is considerably better but still not perfectly fitting the data.
We allowed AC-GNNss with 7 layers to run form more epochs but the results did not improve.

We also took a closer look at the performance for different connectivities of random graphs (Table 2). We define
the set “Erdos-Renyi + k%" as a set of graphs in which the number of edges is k% larger than the number of
nodes. For example, “Erdos-Renyi + 100%” contains random graphs in which the number of egdes doubles
the number of nodes. We see a consistent improvement in the performance of AC-GNNs and GINs when
we train and test them with more dense graphs and more layers (Table 2). This is also consistent with our
theoretical observations that the main problem with AC-GNNs is that they are not able to move information of
local aggregations to distances beyond the number of layers of each network. This combined with the fact that
random graphs that are more dense make the maximum distances between nodes shorter, may explain the boost
in performance for AC-GNNs.

2Our code base can be accessed at
https://anonymous.4open.science/r/c61016£9-60da-493b-817e-766137bd921c/

10

https://anonymous.4open.science/r/c61016f9-60da-493b-817e-766137bd921c/

	Introduction
	Graph Neural Networks
	AC-GNNs and Logics
	ALCQ Description Logic and AC-GNN Classifiers
	Preliminary Experimental Results
	Proof of Proposition 3.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Details on the Experimental Setting and Results

