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Abstract

Network embedding plays a principal role in graph mining. However, two major
limitations exist in previous network embedding methods: dynamics modeling and
uncertainty modeling. In this paper, we propose a dynamic network embedding
method with Gaussian Embedding, DNGE, to overcome these limitations. DNGE
learns node representations for dynamic networks in the space of Gaussian dis-
tributions and models dynamic information by integrating temporal smoothness
as the regularization. Experiments in community detection and link prediction
demonstrate the effectiveness of our method.

1 Introduction

Network data is ubiquitous in daily life and analyzing networks is of both theoretical and practical
values. Recent years have witnessed numerous approaches to analyze networks, e.g., community
detection [1], role discovery [2], and link prediction [3]. As relations exist between nodes that disobey
the i.i.d assumption, it is non-trivial to apply traditional data mining techniques in networks directly.
Network embedding fills this gap by mapping nodes in a network into a low-dimensional space
according to their structural information. Many attempts showed the effectiveness of using network
embedding techniques in different network analysis tasks [4, 5, 6, 7].

To learn effective network representations, different models have been developed in recent years but
there are some limitations. Early network embedding methods mainly focus on static networks [6,
7, 5]. However, many real-world networks are dynamic with evolving structures. The existence of
dynamics makes network analysis a more challenging problem. To solve this problem, recently some
studies have been proposed to take into account the temporal information to learn embeddings, either
in dynamic networks [8, 9, 10] or streaming networks [11, 12, 13]. Nonetheless, real-world networks,
especially dynamic and temporal networks, may be noisy and incomplete and in most cases these
uncertainties are inevitable because of anomaly or missing information. Thus, another limitation still
exists: how to capture the uncertainties of embeddings. Most existing point vector representations are
deterministic [14] and are not capable of modeling the uncertainties of node representations.

Motivated by these observations, we tackle the two major challenges in learning network repre-
sentations: dynamics modeling and uncertainty modeling. In this paper we propose a dynamic
network embedding method with Gaussian Embedding, DNGE. DNGE learns node representations
for dynamic networks in the space of Gaussian distributions and models dynamic information by
integrating temporal smoothness as the regularization. Thus, it can capture temporal information and
model uncertainties in dynamic networks. We propose two different strategies, i.e., smoothness in
means and smoothness in distributions, to model the dynamic information. Smoothness in means
guarantees the learned node representations are consistent and smoothness in distributions allows
that both embeddings and uncertainties can be shared between two consecutive network snapshots.
To evaluate the performance of the proposed DNGE, we conduct community detection and link
prediction experiments on both synthetic and real-world networks. The results demonstrate the
effectiveness of our method in structure preservation, dynamics modeling and uncertainty modeling.
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2 The Proposed Model

Snapshot t Snapshot t+1 Snapshot t+2

Figure 1: Graphical representation of DNGE framework.

A dynamic network is defined as G =
{Gt|t = 1, ..., T} which consists of a
series of graph snapshotsGt = {V,Et}.
We assume edges to be undirected for
simplicity and we also assume that the
nodes are fixed in all snapshots and the
edges change over time.

Definition 1 Given a dynamic network
G = {Gt|t = 1, ..., T}, the problem
of Dynamic Network Gaussian Embed-
ding aims to represent each node vi ∈
V in each snapshot t into a Gaussian
distribution P

(t)
i with mean µ

(t)
i and

covariance Σ
(t)
i in a low-dimensional

space Rd, i.e., learning a function f : V → N (x;µ,Σ), where µ ∈ Rd is the mean, Σ ∈ Rd×d is
the covariance and d� |V |. In the space Rd, the temporal information of nodes is preserved using
explicit temporal regularization and the uncertainty of node representations is captured by Σ.

To solve the problem of Dynamic Network Gaussian Embedding by overcoming the limitations of
dynamics modeling and uncertainty modeling, we propose a dynamic network embedding framework
with Gaussian embedding (DNGE). DNGE consists of two components: Gaussian embedding
component which learns node representations and models uncertainties, and dynamics modeling
component which captures temporal information and smooths learned node representations. Formally,
the objective function is defined as:

LDNGE = min
( T∑

t=1

L(t)
Gaussian + λ

T−1∑
t=1

L(t)
Dynamic

)
, (1)

where L(t)
Gaussian is the Gaussian embedding component in tth snapshot and L(t)

Dynamic is the dynam-
ics modeling component between snapshot t and t+ 1. λ controls the importance of dynamics and
in an extreme case, DNGE is equal to the static Gaussian embedding when λ = 0. The graphical
representation of DNGE is shown in Fig. 1.

2.1 Gaussian Embedding Component

Gaussian embedding component maps each node i in the graph into a Gaussian distribution Pi with
mean µi and covariance Σi. The objective function of Gaussian embedding is defined as:

LGaussian = −
∑

(v,u)∈Γ+

E(Pv, Pu) +
∑

(v′,u′)∈Γ−

E(Pv′ , Pu′), (2)

where Γ+ and Γ− are the positive and negative pairs, respectively. E(·, ·) is the energy function to
measure the similarity between two distributions, Pv and Pu are the learned Gaussian distributions
for nodes v and u. To reduce the computational complexity, for each Gaussian distribution P ∼
N (x;µ,Σ), we only consider the diagonal covariance for Σ. The key idea of network embedding is
that two nodes connected in the network should have similar representations, i.e., similar Gaussian
distributions in Gaussian embedding. Therefore, we should measure the similarity between two
Gaussian distributions. We use KL divergence based energy function to measure the similarity
between two Gaussian distributions in this study. Formally the KL divergence based energy function
EKL(Pi, Pj) is defined as:

EKL(Pi, Pj) = DKL(Pi, Pj) (3)

=

∫
x∈R
N (x;µi,Σi) log

N (x;µj ,Σj)

N (x;µi,Σi)
dx =

1

2

{
tr(Σ−1

i Σj) + µT Σ−1
i µ− log

det(Σj)

det(Σi)
− d
}
,

where µ = µi − µj , d is the number of dimensions, Pi and Pj are the learned Gaussian embeddings
for node i and j respectively. tr(·) is the trace function, det(·) denotes the determinant of a matrix.
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Table 1: Clustering performance on Epinions network.
Method Purity NMI

static embedding methods
DeepWalk 0.1842 0.1456
LINE 0.1322 0.1239
node2vec 0.1713 0.1360

dynamic embedding methods
Dyn Triad 0.1840 0.1629
DynGEM 0.1594 0.1441
DANE 0.1425 0.1216

Gaussian embedding
Gauss Emb 0.1865 0.1503
DNGEMean 0.1873 0.1526
DNGEDist 0.1942 0.1615

In this work, we apply the one-order proximity hypothesis same to [6, 14], i.e., two connected
nodes should have similar representations. Thus, the positive pair set Γ+ (in Eq. (2)) are the edge set
E = {(i, j)|i, j ∈ V } and the negative pair set Γ− are generated from random sampling.

2.2 Dynamics Modeling Component

Dynamics modeling component can capture the temporal information and smooth the learned node
representations. To achieve this goal, we propose two smoothness strategies as a regularization term,
smoothness in means and smoothness in distributions.

Smoothness in means guarantees the learned node representations, i.e., means of Gaussian distribu-
tions, are consistent. The most straightforward way to achieve it is to constrain the change of means
in two consecutive network snapshots. Therefore, the formal definition of smoothness in means is
defined as the square of Frobenius norm of means as follows: SM (t)

i = ‖µ(t)
i − µ

(t−1)
i ‖2F .

Smoothness in distributions considers both means and covariances and allows that both embed-
dings and uncertainties can be shared between two consecutive snapshots. Formally, it is defined
as: SD(t)

i = E(P
(t)
i , P

(t−1)
i ), where E(·, ·) is the method to measure the similarity between two

distributions. To keep consistent, we continue to use KL divergence shown in Eq. (3).

To combine the Gaussian embedding component (Eq. (2)) and dynamics modeling component
(smoothness in means or distributions), we have the objective function for DNGE. For smoothness in
means, in tth snapshot we define the objective function L(t)

DNGE−Mean as:

min
∑
Γ
(t)
+

EKL(P
(t)
i , P

(t)
j )−

∑
Γ
(t)
−

EKL(P
(t)
i′ , P

(t)
j′ ) + λ

∑
Γ(t)

(SM
(t)
i + SM

(t)
j ), (4)

where Γ(t) is obtained by concatenating positive pairs Γ
(t)
+ and negative pairs Γ

(t)
− in snapshot t.

Similarly, for smoothness in distributions, in tth snapshot the objective function L(t)
DNGE−Dist is:

min
∑
Γ
(t)
+

EKL(P
(t)
i , P

(t)
j )−

∑
Γ
(t)
−

EKL(P
(t)
i′ , P

(t)
j′ ) + λ

∑
Γ(t)

(SD
(t)
i + SD

(t)
j ), (5)

In this supplementary material, we discuss the retails on model learning.

3 Experimental Analysis

Setup and Datasets To validate the effectiveness of DNGE, we conduct community detection and
link prediction experiments to evaluate the performance of DNGE on real-world networks. For
community detection, we compare the average clustering performance over all snapshots. For link
prediction, we learn node embeddings on the first T − 1 network snapshots and predict the links on
the last snapshot. Similar to [5], we regard link prediction as a classification task: edges as positive
examples and randomly selected node pairs from each snapshot which have no edge connecting them
as negative examples. Without loss of generality, learned node embeddings are used as the features
and logistic regression is used as the classifier. Normalized Mutual Information (NMI) and Purity are
employed to verify the community results. AUC is used as the evaluation metric in link prediction.
Additionally, we analyze the uncertainty modeling results using synthetic networks.
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Table 2: Link prediction results of different methods.
Data set Enron Messages Reality Facebook
Methods AUC

static embedding embedding
DeepWalk 0.7564 0.6007 0.5874 0.5457
LINE 0.7535 0.5213 0.7018 0.5564
node2vec 0.7819 0.6687 0.5910 0.5384

dynamic embedding embedding
Dyn Triad 0.8355 0.8504 0.7204 0.7255
DynGEM 0.8129 0.8297 0.6776 0.7004
DANE 0.8023 0.7912 0.6743 0.7122

Gaussian embedding
Gauss Emb 0.7883 0.8116 0.6317 0.6213
DNGEMean 0.8130 0.8458 0.6814 0.6221
DNGEDist 0.8373 0.8967 0.7109 0.7422

Table 3: Clustering performance on synthetic network.

Methods Number of noisy edges
0 1000 2000 3000 4000 5000

node2vec 0.9090 0.8693 0.8612 0.8441 0.8412 0.8223
Gauss Emb 0.8825 0.8254 0.8104 0.8002 0.8124 0.7991
Dyn Triad 0.9472 0.8743 0.8722 0.8589 0.8603 0.8502
DNGEMean 0.9287 0.8655 0.8743 0.8552 0.8522 0.8475
DNGEDist 0.9533 0.9101 0.9032 0.8699 0.8653 0.8701

Baselines. We compare 3 types of baseline methods: (1) Static embedding methods: methods map
nodes to deterministic vectors in static networks including DeepWalk [6], LINE [7] and node2vec [5].
(2) Dynamic embedding methods: Dynamic Triad (Dyn Triad) [10], DynGEM [15] and DANE [16]
are compared. (3) Gaussian embedding methods: we compare Gauss Emb [17] and our proposed
DNGE using two dynamics modeling strategies, i.e., DNGEMean and DNGEDist.

Results. The average NMI and Purity for community detection on the Epinions network are shown
in Table 1. From these results, it can be observed that DNGE with smoothness in distributions
outperforms other baselines on Purity and performs the second best on NMI. The results demonstrate
DNGE can effectively preserve network structures. Smoothness in distributions is better than that in
mean and this is because smoothness in distributions can learn more consistent representations.

The AUC scores on the real-world networks are shown in Table 2. From these results, we can
draw the following conclusions: (1) DNGE outperforms other baselines on most networks. The
strategy of smoothness in distributions performs better than smoothness in means because it models
both embeddings and uncertainties as the dynamic regularization. This result is same to that in
community detection. (2) In general, Gaussian embedding methods achieve better performance
than point embedding methods. It demonstrates that Gaussian embedding is a better method for
representation learning in network data. In fact, Gaussian embedding can provide better interpretations
of embeddings from the perspective of probability and Bayesian statistics.

It is intuitive that the more noisy edges a node has, the less discriminative information it contains,
thus making its embedding more uncertain. We synthesize a dynamic network consisting of 400
nodes in 4 snapshots and these nodes belong to 4 communities. To introduce noise, we add different
numbers of random edges to each snapshots from 1000 to 5000. The results of different embedding
methods are shown in Table 3. Note that we select some representative methods from all baselines.
From these results, it can be observed that our DNGE can effectively learn embeddings in noisy
networks. DNGE with distribution smoothness is better than mean smoothness.

4 Conclusions

We proposed a novel dynamic network embedding framework using Gaussian embedding DNGE
to tackle the limitations of dynamics modeling and uncertainty modeling. DNGE learns node
representations by modeling temporal information as regularization. Furthermore, DNGE utilizes
Gaussian embedding to represent each node as a Gaussian distribution to model uncertainties.
Experimental study demonstrated that DNGE effectively preserves community structures, captures
dynamic information, and models uncertainties.
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Appendix A Model Learning

To combine the Gaussian embedding component (Eq. (2)) and dynamics modeling component (Eq. (??) and
Eq. (??)), we have the objective function for DNGE. For smoothness in means, in tth snapshot we define the
objective function L(t)

DNGE as:

min
∑
Γ
(t)
+

EKL(P
(t)
i , P

(t)
j )−

∑
Γ
(t)
−

EKL(P
(t)

i′ , P
(t)

j′ ) + λ
∑
Γ(t)

(SM
(t)
i + SM

(t)
j ), (6)

where Γ(t) is obtained by concatenating positive pairs Γ
(t)
+ and negative pairs Γ

(t)
− in snapshot t. We can compute

the gradients of this objective function with respect to the means µ(t) and covariances Σ(t):

∂L(t)

∂µ
(t)
i

= −∆
(t)
ij + λ(2µ

(t)
i − µ

(t−1)
i − µ(t+1)

i ) (7)

∂L(t)

∂µ
(t)
j

= ∆
(t)
ij + λ(2µ

(t)
j − µ

(t−1)
j − µ(t+1)

j )

∂L(t)

∂Σ
(t)
i

=
1

2

(
(Σ

(t)
i )−1Σ

(t)
j (Σ

(t)
i )−1 + ∆

(t)
ij ∆

(t)T
ij − (Σ

(t)
i )−1

)
∂L(t)

∂Σ
(t)
j

=
1

2

(
(Σ

(t)
j )−1 − (Σ

(t)
i )−1

)
where ∆

(t)
ij = (Σ

(t)
i )−1(µ

(t)
i − µ

(t)
j ). Note that for boundary conditions when t = 1 and t = T , some terms in

the gradient will vary slightly.

Similarly, for smoothness in distributions, in tth snapshot we define the objective function L(t)
DNGE as:

min
∑
Γ
(t)
+

EKL(P
(t)
i , P

(t)
j )−

∑
Γ
(t)
−

EKL(P
(t)

i′ , P
(t)

j′ ) + λ
∑
Γ(t)

(SD
(t)
i + SD

(t)
j ), (8)

The gradients for means µ(t) and covariances Σ(t) are:

∂L(t)

∂µ
(t)
i

= −∆
(t)
ij − λ(∆̃

(t)
i + ∆̃

(t+1)
i ) (9)

∂L(t)

∂µ
(t)
j

= ∆
(t)
ij − λ(∆̃

(t)
j + ∆̃

(t+1)
j )

∂L(t)

∂Σ
(t)
i

=
1

2

{(
(Σ

(t)
i )−1Σ

(t)
j (Σ

(t)
i )−1 + ∆

(t)
ij ∆

(t)T
ij − (Σ

(t)
i )−1

)
+
(

(Σ
(t)
i )−1 − (Σ

(t+1)
i )−1

)
+
(

(Σ
(t)
i )−1(Σ

(t−1)
i )(Σ

(t)
i )−1 + ∆̃

(t)
i ∆̃

(t)T
i − (Σ

(t)
i )−1

)}
∂L(t)

∂Σ
(t)
j

=
1

2

{(
(Σ

(t)
j )−1 − (Σ

(t)
i )−1

)
+
(

(Σ
(t)
j )−1 − (Σ

(t+1)
j )−1

)
+
(

(Σ
(t)
j )−1(Σ

(t−1)
j )(Σ

(t)
j )−1 + ∆̃

(t)
j ∆̃

(t)T
j − (Σ

(t)
j )−1

)}
where ∆

(t)
ij = (Σ

(t)
i )−1(µ

(t)
i − µ

(t)
j ), ∆̃

(t)
i = (Σ

(t)
i )−1(µ

(t)
i − µ

(t−1)
i ) and ∆̃

(t)
j = (Σ

(t)
j )−1(µ

(t)
j − µ

(t−1)
j ).

Note that to avoid the means to grow to large and the covariances to be positive definite as well as reasonably sized,
we regularize the means and covariances to learn the embedding. Due to the different geometric characteristics,
two different hard constraint strategies have been used for means µi and covariances Σi, respectively. In
particular, we have

‖µi‖ ≤ C, ∀i (10)
cminI ≺ Σi ≺ cmaxI, ∀i,

where C, cmin and cmax are the constraint parameters.

We use AdaGrad to optimize the parameters. The learning procedure is described in Algorithm 1. Initialization
phase is from line 1 to 5, context generation is shown from line 6 to 8, and Gaussian embeddings are learned
from line 9 to 12.
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Algorithm 1 The Learning Algorithm of DNGE

Input: A dynamic graph G = {Gt|t = 1, ..., T}, embedding dimension d, constraint values cmax

and cmin for covariance, learning rate α, and max number of iterations n.
Output: Gaussian embeddings (mean vector µ(t)

v and covariance matrix Σ
(t)
v ) for nodes v ∈ V in

snapshot t
1: for all v ∈ V in each snapshot t do
2: Initialize mean µ(t)

v for v in snapshot t
3: Initialize covariance Σ

(t)
v for v in snapshot t

4: Regularize µ(t)
v and Σ

(t)
v with constraint in Eq. (10)

5: end for
6: for all snapshot t do
7: Generate positive and negative sets Γ

(t)
+ and Γ

(t)
− for each node

8: end for
9: while not reach the maximum iteration n do

10: Update means and covariances based on Eq. (7) or (9)
11: Regularize µ and Σ with constraint in Eq. (10)
12: end while

Table 4: A brief statistics of real-world networks.
Data set # nodes # edges # snapshots
Epinions 8518 300548 10
Enron 147 1666 9
Messages 1889 59835 5
Reality 6809 9467 10
Facebook 44416 196414 12

Appendix B Experiment Settings

We conduct experiments on five real-world networks from different domains. The first data set, i.e., Epinions, is
used for community detection1. The remaining data sets are used for link prediction2. A brief overview of these
networks is shown in Table 4.

Mean and covariance constrain parameters C, cmin and cmax are set to be 1.0, 0.5, and 2.0 respectively in all
experiments. In community detection experiments, the latent dimension is 100 for all embedding methods. For
DeepWalk and node2vec, the number of walks is 10, walk length is 80 and window size is 10. For node2vec,
p = 1 and q = 0.5. For Dynamic Triad and DANE, we use the default settings. In link prediction experiments,
the latent dimension of Enron, Message, Reality and Facebook are set to be 32, 64, 100 and 100, respectively.
Other settings are same to community detection.

1https://www.cse.msu.edu/~tangjili/trust.html
2http://networkrepository.com/dynamic.php
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