
Attributed Random Walk as Matrix Factorization

Lei Chen∗
Courant Institute of Mathematical Sciences

New York University, USA
lc3909@nyu.edu

Shunwang Gong
Department of Computing

Imperial College London, UK
shunwang.gong16@imperial.ac.uk

Joan Bruna
Courant Institute of Mathematical Sciences

Center for Data Science
New York University, USA
bruna@cims.nyu.edu

Michael M. Bronstein
Department of Computing

Imperial College London, UK
m.bronstein@imperial.ac.uk

Abstract

Mainstream random walks on graphs mostly focus on the topology while ignoring
node attributes. In this paper, we develop a matrix form of the attributed random
walk with pointwise mutual information in an unsupervised fashion. We show
through experiments that the generated embeddings of flexible dimensions are
robust to label missing on the transductive node classification task.

1 Introduction
Many essential tasks in network analysis involve predictions over nodes and edges with information of
connections and features. Node embedding methods[13, 16, 4] along with graph neural networks [1,
9, 3] have been developed to combine such information. However, mainstream random walks, such
as DeepWalk [13], Line [16], or node2vec [4], do not take feature information into account.

Recently, Huang et al. [7] propose a sampling-based random walk method enhanced with node
attributes. In their approach, sequences with features are sampled with the transition probability
of attributed random walk and fed into a downstream RNN. Their end-to-end attributed random
walk without RNN outperforms baselines on social network datasets, including embedding methods,
GCN [9] and GraphSAGE [5].

In this paper, we provide further insights into the attributed random walk model by connecting it with
the matrix factorization version of DeepWalk, NetMF [14]. Then we propose a matrix factorization
form of the attributed random walk using Skip-Gram with Negative Sampling, leading to increased
performance.

Skip-gram with Negative Sampling (SGNS). In the context of word embedding, SGNS is to
maximize embedding similarities between observed word-context pairs and to minimize similarities
between randomly sampled pairs [12]. Levy and Goldberg [10] prove that SGNS is implicitly
factorizing log

(
#(w,c)|D|
#(w)#(c)

)
− log b, where the “corpus” D is a multiset that counts the multiplicity

of word-context pairs; #(w, c),#(w) and #(c) denote the number of times word-context pair
(w, c), word w and context c appear in the corpus; b is the number of negative samples. A detailed
explanation of “word” and “context” in a graph, along with introduction to DeepWalk and NetMF, is
in Appendix A.

Attributed Random Walk (AttrRW). Huang et al. [7] propose an attributed random walk model
building an attribute graph Ga in addition to the original graph G. They define each node in Ga

∗Source code: https://github.com/leichen2018/AttrRW_Matrix_Factorization

Graph Representation Learning Workshop NeurIPS 2019, Vancouver, Canada.

https://github.com/leichen2018/AttrRW_Matrix_Factorization

Figure 1: Left: Input graph of 4 nodes with 3-dimensional features. Colored squares denote non-zero
features, then we generate connections to the corresponding feature vertices on the attribute graph.
Right: The non-zero feature set Ñ of each node is partitioned into local Ñ+ and non-local Ñ−,
details of which are in Section 3.

corresponding to a feature channel, then establish undirected connections {(u, va)|u ∈ G, va ∈ Ga}
if and only if u has a positive value in the feature channel of va. After sampling fixed-length paths
starting from each node according to the random walk transition probability matrix, they average
features of all observed nodes on the paths to generate the embedding of the starting node.

2 Matrix Factorization Based Attributed Random Walk
In this section, we formulate the attributed random walk with definition of transition probability
matrix, and then present the closed-form target matrix with pointwise mutual information.

2.1 Attributed Random Walk

We consider an undirected graph G = (V = {1, . . . , N}, E ,A,X) with N nodes, edges (i, j) ∈ E ,
an N × N adjacency matrix A (with Ai,j > 0 if (i, j) ∈ E and zero otherwise), a degree matrix

D = diag
(∑N

`=1 Ai,`

)
, and a nonnegativeN×F node attribute matrix X, where F is the dimension

of node features. Typically, A and X are sparse matrices. [7] propose modeling node attributes as
an attribute graph Ga = (Va = {1, . . . , F}, Ea = ∅); the two graphs G and Ga are connected with
inter-graph edge set Ẽ containing an undirected edge (i, j) iff Xi,j > 0, j ∈ Va. Hence, the whole
graph is defined as G̃ = (G,Ga, Ẽ , Ã) with a new weighted matrix Ã defined in Equation 2.

We define the attributed random walk in the following way, as illustrated in Figure 1: 1) from a
vertex in G, the next step of the walk has a probability of α to stay in G, 1− α to switch into Ga; 2)
from a vertex in Ga, the next step goes backs to G with probability 1; 3) the conditional probability
of walk from i ∈ V to j ∈ Va is proportional to Xi,j , which means Prob(j|j ∈ Va, i) ∝ Xi,j .
We denote the row-wise normalized feature matrix as X = (Xi,j) = (Xi,j/

∑
l Xi,l). Hence, the

transition probabilities are Prob(j ∈ V|i ∈ V) = α · Ai,j/Di,i, Prob(j ∈ Va|i ∈ V) = (1 −
α)(Di,iXi,j)/(

∑
k Di,iXi,k) = (1− α) ·Xi,j , Prob(j ∈ V|i ∈ Va) = Dj,jXj,i/(

∑
k Dk,kXk,i).

The matrix form is:

P̃ = D̃−1Ã ∈ R(N+F)×(N+F), (1)

Ã =

[
αA (1− α)DX

(1− α)XT
D 0

]
∈ R(N+F)×(N+F), D̃ = diag

N+F∑
j=1

Ãi,j

 (2)

Note that: 1) Ã is symmetric, with a different lower left block from that in [7]; 2) the sum of each
row of P̃ is 1; 3) in the first N rows of P̃, the sum of the left N entries in each row is α while the
sum of the right F entries is 1− α. Hence, P̃ is a transition probablity matrix of attribute random
walk with probability of (1 − α) jumping from G to Ga; 4) in this paper, α is set as 0.5, which is
experimentally optimal suggested in [7].

2

2.2 Matrix Factorization of Pointwise Mutual Information

With transition probablity matrix P̃, now we add SGNS into attributed random walk. Consider
an observed vertex-context pair (v, c) with v, c ∈ V ∪ Va. SGNS’s objective for a single (v, c)
observation is then

max log σ(Hv ·H′c) + k · EcN∼PD [log σ(−Hv ·H′cN)], (3)

where σ(x · y) = 1/(1+e−x·y), PD(c) = #(c)/|D| as randomly sampling k negative contexts from
collection D of empirical observed vertex-context pairs. H, H′ are node and context representations
we are seeking.
Proposition 1. The objective in Equation 3 is equivalent to factorizing

Hv ·H′c = log

(
#(v, c) · |D|
#(v) ·#(c)

)
− log k. (4)

The proof is the same as that in (Section 3.1, [10]). The first log(·) term in RHS is known as Pointwise
Mutual Information of (v, c).
Proposition 2. Denote the length of each random walk by L, the context window size by T , use vol(·)
to denote summing of all entries in the matrix, and set di = D̃i,i. When L → ∞, it converges in
probability as

#(v, c) · |D|
#(v) ·#(c)

p−→ vol(Ã)

2T

(
1

dc

T∑
r=1

(P̃r)v,c +
1

dv

T∑
r=1

(P̃r)c,v

)
. (5)

The proof is the same as that in (Theorem 2.3, [14]). As a consequence, since Ã is symmetric and
P̃ = D̃−1Ã, we derive the following matrix form of Equation 5’s RHS

vol(Ã)

2T

(
T∑

r=1

P̃rD̃−1 +

T∑
r=1

D̃−1(P̃r)T

)
= vol(Ã)

(
1

T

T∑
r=1

P̃r

)
D̃−1

= vol(Ã)D̃−
1/2

(
1

T

T∑
r=1

(D̃−
1/2ÃD̃−

1/2)r

)
D̃−

1/2 , M. (6)

Therefore, we are explicitly factorizing HH′
T
= logM−log k with the definition of M in Equation 6.

Moreover, while it is impractical to directly use the dense matrix [10], we would utilize a variant
version called Shifted PPMI as S = max(logM− log k, 0). With different definitions of H and H′,
we can generate different representations for downstream tasks. For example, if H′ is an identity
matrix, then H = S. On the other hand, to generate a representation of low dimension d with
d� |V + Va| = N +F , we can let H = H′ ∈ R(N+F)×d then HH′

T is a rank-d approximation of
S. The loss of approximation relies on the spectrum of S [2].

3 Evaluation and Discussion
We evaluate the matrix-based algorithm in two aspects. First, we compare its performance with some
baselines on a task of transductive node classification. Then, we conduct an ablation study to explain
why attributed random walk outperforms NetMF2.

Experiment setup and baselines are shown in Appendix A. All model settings are provided in the
Appendix B.

Our Models. To better evaluate various settings of all nodes as HV ,H
′
V and show flexibility as

an advantage of matrix factorization methods, we test several forms of representation H in Table 2
and 3, all denoted as "Ours": 1) HV = S:N,:N ∈ RN×N , as augmented graph weight matrix; 2)
HV = S:N,:NX ∈ RN×F , as augmented node features; 3) HV = H′V = (UdΣ

1/2
d) ∈ RN×d with

S:N,:N ≈ UdΣdU
T
d , d ∈ {16, 128, 200}, as low-dimensional node embeddings. Models 1 and 2 are

followed by a 2-layer MLP since their outputs are still in high dimension, while model 3 is followed
by a 1-layer perceptron that can be viewed as logistic regression.

2 NetMF [14] is a matrix factorization version of DeepWalk [13]. We pick NetMF as a baseline to evaluate
how much the attribute graph contributes.

3

10% 25% 50% 100%
labeled proportion

60

70

80

90

te
st

 a
cc

ur
ac

y
(%

)

BlogCatalog

10% 25% 50% 100%
labeled proportion

40

50

60

70

80

90

te
st

 a
cc

ur
ac

y
(%

)

Flickr

5% 10% 'kipf' 25% 50%100%
labeled proportion

50

60

70

80

te
st

 a
cc

ur
ac

y
(%

)

Cora

GCN
GFNN

DGI
NetMF

NetMF-SVD
AttrRW

ours 1
ours 2

ours 3

Figure 2: Node Classification Results (test accuracy, %) on BlogCatalog [6], Flickr [6] and Cora [15]
with mean accuracies of 10 running. Precise numercial results are provided in Table 2 and 3. Details
of baselines and our models are shown in Appendix A and B.

Node Classification Results. The classification results are shown in Figure 2, Table 2 3, with the
mean and standard deviation of running with 10 seeds. For social network datasets BlogCatalog
and Flickr, our methods consistently outperform all baselines; for citation network dataset Cora, our
methods show a competitive performance, especially largely outperforming sample-based attributed
random walk [7]. Moreover, our methods are much more robust to label missing in training data.
Among our methods, generally the augmented weight matrix version (Ours 1) and the low-dimensional
version (Ours 3) are better. Briefly, our attributed random walk with matrix factorization shows the
state-of-the-art performance and enjoys the flexibility of output.

Table 1: Node classification results (test
accuracy, %) with various sets of con-
nections between nodes and features.

BlogCatalog Flickr

Ours 1 w./ Ñ (full) 93.73±0.69 92.10±0.70
Ours 1 w./ Ñ− (non-local) 91.58±0.76 89.50±0.76
Ours 1 w./ Ñ+ (local) 89.53±0.66 67.35±1.16
NetMF [14] (none) 71.36±1.00 60.58±0.81

Why does attributed random walk work? One motiva-
tion of attributed random walk is to mitigate the tendency
of converging to nodes with high centralities [7]. We de-
sign a toy experiment to verify it as shown in Figure 1
and Table 1. The full version connects i ∈ V, j ∈ Va

once Xi,j > 0 which may still go back to 1-hop neigh-
bours in 2 steps. Now we divide features of each node
into "local" set Ñ+ and "non-local" set Ñ−. Define
Ñ (i) as the nonzero feature set for vertex i, which means
Ñ (i) = {j ∈ Va|Xi,j > 0}. Define two disjoint sub-
sets of Ñ as Ñ+(i) = Ñ (i) ∩ [

⋃
k∈V:(i,k)∈E Ñ (k)] and

Ñ−(i) = Ñ (i) \ Ñ+(i). So Ñ+ is an attribute node set through which the walk would have a higher
probability (probably not 100%) back to 1-hop neighbourhood in 2 steps than Ñ while Ñ− would
definitely not. We separately substitute Ñ with Ñ− or Ñ+ in model "Ours 1" and, moreover, take
NetMF [14] as the baseline since our model without Ñ would perfectly degenerate to it. The results
in Table 1 reveal that connections to non-local features showing a comparable performance with the
original one make more contribution than local features. Since the attribute matrix X is sparse and
non-negative, connections to non-local features help the walk step into another non-neighbouring
vertex with a probability approximating attribute similarities between vertices. Therefore, attributed
random walk naturally combines structural connections with node similarity.

4 Conclusions
In this work we further develop unsupervised attributed random walks to obtain efficient node
embeddings. We formally derive the matrix of pointwise mutual information for attributed random
walk. Experimentally our matrix form of attributed random walk enjoys robustness to label missing
together with flexible output dimensions. Mechanism of attributed random walk is verified as
mitigating converging to nodes with high centralities, which could be extended for future work.

4

References
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally

connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[2] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[3] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[4] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864. ACM, 2016.

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[6] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed network embedding. In
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pages
731–739. ACM, 2017.

[7] Xiao Huang, Qingquan Song, Yuening Li, and Xia Hu. Graph recurrent networks with attributed
random walks. In SIGKDD Conference on Knowledge Discovery, 2019.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[10] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In
Advances in neural information processing systems, pages 2177–2185, 2014.

[11] Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters. arXiv
preprint arXiv:1905.09550, 2019.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[13] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM, 2014.

[14] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, pages 459–467.
ACM, 2018.

[15] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[16] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th international conference
on world wide web, pages 1067–1077. International World Wide Web Conferences Steering
Committee, 2015.

[17] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

[18] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153,
2019.

5

Table 2: Node Classification Results (test accuracy, %) on BlogCatalog [6] and Flickr [6]. All results
are reported as the mean and standard deviation of running results with 10 random seeds. *Details of
our models are shown as "Our Models" in Section 3.

dataset BlogCatalog Flickr

|V| 5196 7575
|E| 171,743 239,738
|Va| 8,189 12,047

Labeled% 10% 25% 50% 100% 10% 25% 50% 100%

GCN [9] 70.10±1.52 72.75±0.89 74.77±1.08 76.70±0.97 54.52±4.65 60.63±1.15 63.66±0.98 66.81±1.44
GFNN [11] 74.78±1.23 79.00±1.54 81.38±1.50 83.84±0.94 60.13±3.02 68.02±2.15 72.43±0.88 76.60±0.80
DGI [17] 71.32±0.79 72.45±0.88 73.18±0.60 73.47±0.64 44.44±0.90 48.75±0.98 50.48±0.77 52.22±0.98
NetMF [14] 66.38±1.40 69.12±1.92 70.01±1.15 71.36±1.00 50.00±1.46 55.05±1.13 57.43±1.35 60.58±0.81
NetMF-SVD [14] 55.19±1.43 63.37±0.89 66.22±1.72 69.32±0.86 42.54±1.27 50.69±1.04 55.05±1.04 58.59±1.07
AttrRW [7] 84.54±1.52 90.22±1.14 92.63±0.94 94.50±0.75 73.55±1.05 83.16±0.86 88.05±0.82 90.87±0.84
Ours 1* 89.76±0.85 92.54±0.62 93.34±0.58 93.73±0.69 87.19±1.29 89.66±1.21 90.64±0.75 92.10±0.70
Ours 2* 88.10±2.28 91.22±0.79 92.40±0.73 93.56±0.85 85.99±1.29 87.63±1.58 89.65±0.62 90.96±0.91
Ours 3* 89.66±1.08 92.13±0.50 93.51±0.48 94.58±0.45 87.28±0.78 90.40±0.64 91.68±0.50 93.10±0.51

Table 3: Node Classification Results (test accuracy, %) on Cora [15]. All results are reported as the
mean and standard deviation of running results with 10 random seeds. *Details of our models are
shown as "Our Models" in Section 3. **11.7% is from Thomas Kipf’s split of Cora data [9].

dataset Cora

|V| 2,708
|E| 5,429
|Va| 1,433

Labeled% 5% 10% 11.7%** 25% 50% 100%

GCN [9] 74.02±2.96 79.25±1.05 80.95±0.64 84.26±1.37 86.83±0.96 87.44±1.10
GFNN [11] 73.40±3.19 78.21±1.57 80.08±1.23 83.42±1.29 85.48±0.94 85.86±1.07
DGI [17] 78.19±2.47 81.8±1.51 82.5±0.46 84.63±1.16 86.00±1.18 87.23±1.00
NetMF [14] 67.33±2.64 72.53±1.43 72.53±0.55 77.33±1.79 80.83±1.25 83.89±1.25
NetMF-SVD [14] 60.28±3.73 67.04±1.77 64.65±0.73 71.05±1.85 76.74±2.39 80.25±1.26
AttrRW [7] 50.08±2.51 57.63±1.72 61.2±0.75 69.75±1.47 74.67±1.35 78.75±1.11
Ours 1* 75.19±1.92 80.01±1.65 80.80±0.57 83.73±1.54 85.7±0.97 86.92±0.99
Ours 2* 73.93±3.89 79.56±1.11 80.18±1.42 82.83±0.67 84.88±1.31 85.58±1.03
Ours 3* 75.64±2.15 78.75±1.60 79.59±0.28 81.13±1.44 83.29±1.62 85.15±1.11

A Further Explanations

Word and context. The target of random walks on graphs is to obtain embeddings of all nodes for
downstream tasks. A typical approach to generate the embedding of a node u is sampling fixed-length
paths starting from u according to the random walk transition probability matrix P = D−1A and
recording all observed pairs (u, v) in a multiset-like “corpus” D, where v denotes each node that
appears in these paths and the length of paths is the window size. Hence, similar to a sentence in
natural languages, u is a word and v is a context, with which we would like to generate the embedding
of u through processing the mutual information between u and all v′s.

DeepWalk and NetMF. DeepWalk [13] first samples a random vertex and a following path on
the graph, then utilizes SGNS to maximize mutual information among vertices that appear within
a limited-size window. NetMF [14] establish a connection between the target matrix of SGNS
and normalized graph Laplacian, obtaining an explicit closed-form matrix that DeepWalk aims to
implicitly approximate and factorize: #(w,c)|D|

#(w)#(c)

p−→ vol(A)
(

1
T

∑T
r=1 Pr

)
D−1, where vol(A) is

the volume of a graph adjacency matrix A; T is the window size; D is the diagonal matrix of node
degrees; P = D−1A is the transition probability matrix of random walk on the graph.

Experiment Setup. We take three network benchmarks BlogCatalog [6], Flickr [6] and Cora [15],
whose details are included in Table 2 and 3. For BlogCatalog and Flickr, we randomly split each
dataset into 80%/20% as training/test set. To evaluate the models’ capability of inferring with limited
labels, we vary the proportion of labeled data among the training data from 10% to 100%. We
randomly choose 10% of the labeled training data are isolated as the validation set. For Cora, we
randomly select out 500/1000 nodes as validation/test set, numerically keeping same with Kipf’s data
split [9], with the rest as the training set and vary the proportion of labeled data from 5% to 100%. In
addition, we include the same label setting as Kipf’s experiments. For all datasets, the validation set
is used for early stopping with a patience of 10 epochs with respect to validation loss.

6

Baselines. We compare our methods against sample-based Attributed Random Walk [7], NetMF [14],
GFNN [11], GCN [9], DGI [17]. Except for GCN, all other methods are followed by a 2-layer MLP
or a single1 layer percepton, depending on the output dimension, to evaluate the embedding quality.

B Specific Model Architectures
We compare our methods with several baselines on the node classification task in Section A. Here are
some details of the model settings. Note that all models are under the same setup of seed and dataset
split. Some specific details are included for experiments on Cora.

• GCN: Graph Convolutional Network by [9]. The GCN model has two graph convolutional
layers with 128 hidden units. It is trained through the Adam [8] optimizer with learning rate
of 0.01, batch size of 128, dropout rate of 0.5 for 200 epochs with 10 as patience.

• GFNN: Graph Filter Neural Network by [11]. We set the power order of normalized
augmented adjacency matrix as 2 and hidden units as 128. We have tried classifiers of a
2-layer MLP and a single-layer perceptron, where the latter would degenerate to SGC [18].
Results of the 2-layer MLP are much better so reported. It is trained with the Adam optimizer
with learning rate of 0.01, batch size of 128, dropout rate of 0.5 for 200 epochs with 10 as
patience.

• DGI: Deep Graph Infomax by [17]. The feature extractor is a 2-layer GCN with 200 hidden
units. The classifier is a single-layer perceptron that can be viewed as logistic regression.
The extractor is trained through the Adam optimizer with learning rate of 0.0001 for 10000
with 100 as patience. The classifier is trained through the Adam optimizer with learning
rate of 0.01 for 20000 epochs and the model with the lowest validation loss is taken for
evaluation on the test data. The negative sampling method is the same as proposed in the
authors’ code3.

• NetMF: Network Embedding as Matrix Factorization by [14]. The algorithm we utilize
here is the "algorithm 3" for a small window size in the original literature but without the last
step of SVD. Therefore, the embedding is in RN×N . The classifier is a 2-layer perceptron
with 200 hidden units. It is trained through the Adam optimizer with learning rate of 0.001,
batch size of 128, dropout of 0.5 for 200 epochs with 10 as patience. The window size is 5.

• NetMF-SVD: Also from [14]. The algorithm we utilize here is exactly the "algorithm 3"
for a small window size in the original literature. The SVD is a truncated version of rank
200. Therefore, the embedding is in RN×200. The classifier is a single-layer perceptron.
It is trained through the Adam optimizer with learning rate of 0.001, batch size of 128,
dropout of 0.5 for 200 epochs with 10 as patience. The window size is 5. On Blogcatalog
and Flickr, it has output dimension of d = 200. On Cora, it output embeddings in dimension
of d = 128 for data split of 50%, 100% while in dimension of d = 16 for fewer labels.

• AttrRW: Attributed Random Walk by [7]. The implementation is with exactly the authors’
code4 with the RNN and BatchNorm parts eliminated. The model is with 800 hidden units,
100 number of paths for each node, 0.5 as α and 5 as the lengths of paths. It is trained
through the Adam optimizer with learning rate of 0.0001, batch size of 32, weight decay of
5e-4, dropout rate of 0.5 for 200 epochs with 10 as patience.

• Ours: Definitions of representations H for all the three models are provided in section 3.
The window size is 5 and α is 0.5. The classifier for "ours 1" and "ours 2" is a 2-layer
perceptron with 200 hidden units while that for "our 3" is a single-layer perceptron. They
are trained through the Adam optimizer with learning rate of 0.001, weight decay of 5e-4,
dropout rate of 0.5, batch size of 128 for 200 epochs with 10 as patience. On Blogcatalog
and Flickr, "ours 3" has output dimension of d = 200. On Cora, "ours 3" output embeddings
in dimension of d = 128 for data split of 50%, 100% while in dimension of d = 16 for
fewer labels.

3https://github.com/PetarV-/DGI/tree/0afce4e36b5edbe1e735536d15b748d0381e4083
4https://github.com/xhuang31/GraphRNA_KDD19/tree/c9bcaf5d9ca0f8e266a12762cce78b1d240eaa50

7

	Introduction
	Matrix Factorization Based Attributed Random Walk
	Attributed Random Walk
	Matrix Factorization of Pointwise Mutual Information

	Evaluation and Discussion
	Conclusions
	Further Explanations
	Specific Model Architectures

