Graph Representation Learning for Optimization on Graphs

Bistra Dilkina

Assistant Professor of Computer Science, USC Associate Director, USC Center of AI in Society

AI for Sustainability and Social Good

Biodiversity Conservation Disaster resilience Public Health & Well-being

Design of policies to manage limited resources for best impact translate into large-scale decision / optimization and learning problems,

combining discrete and continuous effects

ML \leftrightarrow Combinatorial Optimization

- Exciting and growing research area
- Design discrete optimization algorithms with learning components
- Learning methods that incorporate the combinatorial decision making they inform

Constraint Reasoning and Optimization

Decision making problems of larger size and new problem structure drive the continued need to improve combinatorial solving methods

Constraint Reasoning and Optimization

Tackling NP-Hard problems	Design rationale
Exact algorithms	Tight formulations, good IP solvers
Approximation algorithms	Worst-case guarantees
Heuristics	Intuition, Empirical performance

A realistic setting

- Same problem is solved repeatedly with slightly different data
- Delivery Company in Los Angeles:
 - Daily routing in the same area with slightly different customers

Opportunity:

Automatically tailor algorithms to a family of instances to discover novel search strategies

ML-Driven Discrete Algorithms

Elias B. Khalil^{*}, Hanjun Dai^{*}, Yuyu Zhang, Bistra Dilkina, Le Song. Learning Combinatorial Optimization Algorithms over Graphs. NeurIPS, 2017.

Algorithmic Template: Greedy

- **Minimum Vertex Cover:** Find smallest vertex subset *S* s.t. each edge has at least one end in *S*
 - Example: advertising optimization in social networks
 - 2-approx:

greedily add vertices of edge with **max degree sum**

Learning Greedy Heuristics

Given: graph problem, family of graphs **Learn**: a **scoring function** to guide a **greedy** algorithm

Problem	Minimum Vertex Cover	Maximum Cut	Traveling Salesman Problem
Domain	Social network snapshots	Spin glass models	Package delivery
Greedy operation	Insert nodes into cover	Insert nodes into subset	Insert nodes into sub-tour

Joint work with Elias Khalil, Hanjun Dai, Yuyu Zhang and Le Song [NIPS 2017]

Challenge #1: How to Learn

Possible approach: Supervised learning

• Data: collect (partial solution, next vertex) pairs

featureslabelfrom precomputed (near) optimal solutions

PROBLEM

Supervised learning → Need to compute good/optimal solutions to NP-Hard problems in order to learn!!

Reinforcement Learning Formulation

SOLUTION

Improve policy by learning from experience \rightarrow no need to compute optima

Challenge #2: How to Represent

- Action value function: $\hat{Q}(S_t, \boldsymbol{\nu}; \Theta)$
 - Estimate of goodness of vertex v in state S_t
- Representation of v: Feature engineering
 - Degree, 2-hop neighborhood size, other centrality measures...

PROBLEMS

- 1- Task-specific engineering needed
- 2- Hard to tell what is a good feature
- 3- Difficult to generalize across diff. graph sizes

Deep Representation Learning

structure2vec

Dai, Hanjun, Bo Dai, and Le Song. "Discriminative embeddings of latent variable models for structured data." ICML. 2016.

Deep Representation Learning

Compute Q-value:

 $\widehat{Q}(h(S), v; \Theta) = \theta_5^\top \operatorname{relu}([\theta_6 \sum_{u \in V} \mu_u^{(T)}, \theta_7 \, \mu_v^{(T)}])$

Sum-pooling over nodes

Θ: model parameters

Minimum Vertex Cover - BA

MaxCut - BA

TSP - clustered

Learning-Driven Algorithm Design

Takeaways

- RL tailors greedy search to family of graph instances
- Learn features jointly with greedy policy
- Human priors encoded via meta-algorithm (Greedy)

The data-decisions pipeline

Many real-world applications of AI involve a common template: [Horvitz and Mitchell 2010; Horvitz 2010]

Standard two stage: predict then optimize

Standard two stage: predict then optimize

Challenge: misalignment between "accuracy" and decision quality

Training: maximize decision quality

Pure end to end: predict decisions directly from input

Training: maximize decision quality

Pure end to end: predict decisions directly from input

Challenge: optimization is hard to encode in a NN

Training: maximize decision quality

Decision-focused learning: differentiable optimization during training

Training: maximize decision quality

Decision-focused learning: differentiable optimization during training

Challenge: how to make optimization differentiable?

Relax + differentiate

Forward pass: run a solver

Backward pass: sensitivity analysis via KKT conditions

Convex QPs [Amos and Kolter 2018, Donti et al 2018] Linear and submodular programs [Wilder, Dilkina, Tambe 2019] MAXSAT (via SDP relaxation) [Wang, Donti, Wilder, Kolter 2019] MIPs [Ferber, Wilder, Dilkina, Tambe 2019]

Some problems don't have good relaxations Slow to solve continuous optimization problem Slow to backprop through $-O(n^3)$

Our Alternative

- Learn a **representation** that maps the original problem to a simpler (efficiently differentiable) **proxy problem**.
- Instantiation for a class of graph problems: k-means clustering in embedding space.

Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe. End to End Learning and Optimization on Graphs. NeurIPS, 2019.

Graph learning + graph optimization

Problem classes

Partition the nodes into K disjoint groups

• Community detection, maxcut, ...

Select a subset of K nodes

- Facility location, influence maximization, ...
- Methods of choice are often combinatorial/discrete

Approach

- Observation: **clustering nodes** is a good proxy
 - Partitioning: correspond to well-connected subgroups
 - Facility location: put one facility in each community
- Observation: graph learning approaches already embed into R^n

Differentiable K-means

$$\mu_k = \frac{\sum_j r_{jk} x_j}{\sum_j r_{jk}} \quad \checkmark$$

Forward

pass

$$r_{jk} = \frac{\exp(-\beta||x_j - \mu_k||)}{\sum_{\ell} \exp(-\beta||x_j - \mu_\ell||)}$$

Update cluster centers

Softmax update to node assignments

 Option 1: differentiate through the fixed-point condition
$\mu^t = \mu^{t+1}$ • Prohibitively slow, memory-intensive

Backward pass Option 1: differentiate through the fixed-point condition

$$\mu^t=\mu^{t+1}$$

- Prohibitively slow, memory-intensive
- Option 2: unroll the entire series of updates
 - Cost scales with # iterations
 - · Have to stick to differentiable operations

Backward pass Option 1: differentiate through the fixed-point condition

 $\mu^t = \mu^{t+1}$

- Prohibitively slow, memory-intensive
- Option 2: unroll the entire series of updates
 - Cost scales with # iterations
 - Have to stick to differentiable operations
- Option 3: get the solution, then unroll one update
 - Do anything to solve the forward pass
 - Linear time/memory, implemented in vanilla pytorch

Theorem [informal]: provided the clusters are sufficiently balanced and well-separated, the Option 3 approximate gradients converge exponentially quickly to the true ones.

Idea: show that this corresponds to approximating a particular term in the analytical fixed-point gradients.

Example: community detection

$$\max_{r} \frac{1}{2m} \sum_{u,v \in V} \sum_{k=1}^{K} \left[A_{u,v} - \frac{d_{u}d_{v}}{2m} \right] r_{uk} r_{vk}$$
$$r_{uk} \in \{0,1\} \quad \forall u \in V, k = 1 \dots K$$
$$\sum_{k=1}^{K} r_{uk} = 1 \quad \forall u \in V$$

Observe partial graph

Predict unseen edges

Find communities

Example: community detection

- **Useful in scientific discovery** (social groups, functional modules in biological networks)
- In applications, two-stage approach is common: [Yan & Gegory '12, Burgess et al '16, Berlusconi et al '16, Tan et al '16, Bahulker et al '18...]

Experiments

- Learning problem: link prediction
- Optimization: community detection and facility location problems
- Train **GCNs** as predictive component

Experiments

- Learning problem: link prediction
- Optimization: community detection and facility location problems
- Train **GCNs** as predictive component
- Comparison
 - Two stage: GCN + expert-designed algorithm (2Stage)
 - Pure end to end: Deep GCN to predict optimal solution (e2e)

Results: single-graph link prediction

Representative example from **cora**, citeseer, protein interaction, facebook, adolescent health networks

Community algos: CNM, Newman, SpectralClustering Facility Locations algos: greedy, gonzalez2approx

Results: generalization across graphs

ClusterNet learns generalizable strategies for optimization!

Results: optimization only ClusterNet as a solver

-					
_	cora	cite.	prot.	adol	fb
ClusterNet	0.71	0.76	0.52	0.55	0.80
GCN-e2e	0.07	0.08	0.14	0.15	0.15
Train-CNM	0.08	0.34	0.05	0.60	0.80
Train-Newman	0.20	0.22	0.29	0.30	0.47
Train-SC	0.15	0.08	0.07	0.46	0.79

ClusterNet learns an effective graph optimization solver!

Takeaways

- Good decisions require integrating learning and optimization
- Pure end-to-end methods miss out on useful structure
- Even simple optimization primitives provide good inductive bias

ML \iff Combinatorial Optimization USC

Exciting and growing research area

Infusing Discrete Optimization with Machine Learning

Augment discrete optimization algorithms with learning components

Learning methods that incorporate the combinatorial decisions they inform

ML \iff Combinatorial Optimization

- Exciting and growing research area
- Design discrete optimization algorithms with learning components
- Learning methods that incorporate the combinatorial decision making they inform

Thank you!

SF CLIMATE SCIENCE CENTER