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Al for
Sustainability and Social Good

Biodiversity Conservation Disaster resilience Public Health & Well-being

Design of policies to manage limited resources for best
impact translate into
large-scale decision / optimization and learning problems,
combining discrete and continuous effects
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ML = Combinatorial
Optimization

Exciting and growing research area

Design discrete optimization
algorithms with learning components

Learning methods that incorporate
the combinatorial decision making
they inform




Constraint Reasoning and USC
Optimization

Decision making problems of larger size and new problem structure
drive the continued need to improve combinatorial solving methods
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Constraint Reasoning and

Optimization

Tackling NP-Hard problems

Design rationale

Exact algorithms

Approximation algorithms
Heuristics

A realistic setting

Tight formulations, good IP
solvers

Worst-case guarantees
Intuition, Empirical performance

« Same problem is solved repeatedly with

data

 Delivery Company in Los Angeles:
« Daily routing in the same area with slightly different

customers

Opportunity:

Automatically tailor algorithms to
a family of instances to
discover novel search strategies

USC
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ML-Driven Discrete Algorithms
ML Paradigm
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Elias B. Khalil*, Hanjun Dai*, Yuyu Zhang, Bistra Dilkina, Le Song.
Learning Combinatorial Optimization Algorithms over Graphs.

.\ , NeurlPS, 2017.
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Algorithmic Template: Greedy

* Minimum Vertex Cover: Find smallest vertex subset § s.t.
each edge has at least one end in §
« Example: advertising optimization in social networks
e 2-approx:
greedily add vertices of edge
with max degree sum
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Learning Greedy Heuristics

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy

Problem ‘ Minimum Vertex Cover Maximum Cut Traveling Salesman Problem
Domain Social network snapshots  Spin glass models Package delivery
Greedy operation | Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour
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Joint work with Elias Khalil, Hanjun Dai, Yuyu Zhang and Le9$ong [NIPS 2017]



Challenge #1: How to Learn

Possible approach: Supervised learning
« Data: collect (partial solution, next vertex) pairs
features label
from precomputed (near) optimal solutions

PROBLEM
Supervised learning — Need to compute

good/optimal solutions to NP-Hard
problems in order to learn!!

10
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Reinforcement Learning Formulation

Minimum xiern{l()r,ll} Z}xl “,_\ Reward: 7 ! ]
(S

VerteX  |g gy, 1= 1,9(1,]) € &

Cover

(State S: current partial solution]

Start with COVER = empty ——T—_

Repeat until all edges

covered: Y
/[ Action value function: Q(S, v) ]
1. Compute score for each > - ~
N J Greedy poI|cyz
2. Select vertex with —=—T—__ V= argmax, (S, v)
largest score . 1
3. Add best vertex to COVER Update state §

SOLUTION

Improve policy by learning from
experience — no need to compute optima
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Challenge #2: How to Represent

» Action value function: {(S,, v; 9)
 Estimate of goodness of vertex v in state S;

* Representation of v: Feature engineering
» Degree, 2-hop neighborhood size, other centrality measures...

re
-

PROBLEMS
1- Task-specific engineering needed

2- Hard to tell what is a good feature
3- Difficult to generalize across diff. graph sizes
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Deep Representation Learning

structure2vec
Dai, Hanjun, Bo Dai, and Le Song. "Discriminative embeddings of latent variable models for structured data." ICML. 2016.
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Graph embedding
(D) lev + Node’s own tag x,,

03" L0 Neighbors
ueN (v) features

03 ZueN(v) relu(6s w(v, u)))

Neighbors’ edge weights

®: model parameters

15
Repeat embedding T times
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Deep Representation Learning

@(St» v; 0)
~ o

Compute Q-value:

Q(n(S),v;0) = 6] relu([fs Y pi", 07 ui))

Sum-pooling
over nodes

®: model parameters

16
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Minimum Vertex Cover - BA
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MaxCut - BA

EEm S2V-DQN  Our Approach
1.6{ HEE PN-AC [Vinyals et al. 2015]
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TSP - clustered

S2V-DQN  Our Approach
2-opt

PN-AC [Vinyals et al. 2015]
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Learning-Driven Algorithm Design

ML Paradigm _
General IP Heuristic
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Supervised Learning 1

Takeaways

RL tailors greedy search to family of graph instances

Learn features jointly with greedy policy
Human priors encoded via meta-algorithm (Greedy)




The data-decisions pipeline

USC

Many real-world applications of Al involve a common template:

[Horvitz and Mitchell 2010; Horvitz 2010]

Observe data

-

Predictions

-

Decisions




USC

Training: maximize accuracy

S Y

o o o o o MmO~

Standard two stage: predict then optimize
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Training: maximize accuracy

arg max f(x,0)|~»

Standard two stage: predict then optimize

Challenge: misalignment between “accuracy”
and decision quality
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Training: maximize decision quality

Pure end to end: predict decisions directly from input



USC

Training: maximize decision quality

Pure end to end: predict decisions directly from input

Challenge: optimization is hard to encode in a NN
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Training: maximize decision quality

Decision-focused learning: differentiable optimization during training
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Training: maximize decision quality

Decision-focused learning: differentiable optimization during training

Challenge: how to make optimization
differentiable?
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Relax + differentiate

Forward pass: run a solver

—> —>

Backward pass: sensitivity analysis via KKT conditions

Convex QPs [Amos and Kolter 2018, Donti et al 2018]

Linear and submodular programs [Wilder, Dilkina, Tambe 2019]
MAXSAT (via SDP relaxation) [Wang, Donti, Wilder, Kolter 2019]
MIPs [Ferber, Wilder, Dilkina, Tambe 2019]

Some problems don’t have good relaxations
Slow to solve continuous optimization problem
Slow to backprop through — 0 (n3)
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Our Alternative

* Learn a representation that maps the original problem
to a simpler (efficiently differentiable) proxy problem.

* Instantiation for a class of graph problems: k-means
clustering in embedding space.

Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe.
247 End to End Learning and Optimization on Graphs.
o 3@ NeurlPS, 2019.
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Graph learning + graph optimization

Learning (e.g. link prediction) Optimization

Partitioning Facility location
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Problem classes

 Partition the nodes into K disjoint groups
« Community detection, maxcut, ...

» Select a subset of K nodes
* Facility location, influence maximization, ...

* Methods of choice are often combinatorial/discrete

Approach

» Observation: clustering nodes is a good proxy
« Partitioning: correspond to well-connected subgroups
* Facility location: put one facility in each community

» Observation: graph learning approaches already embed into R"
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ClusterNet Approach
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Differentiable K-means

D
[ = 2 Tk (e Jpdate cluster centers
Zj Tjk

Forward

pass exp(—B||z; — pxl|) Softmax update to

5 exp(—B|z; — pel]) ' node assignments
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Differentiable K-means

 Option 1: differentiate through the fixed-point
condition

t _ ,,t+1
Backward H=H
 Prohibitively slow, memory-intensive

pass
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Differentiable K-means

 Option 1: differentiate through the fixed-point
condition

t — ,,t+1
Backward o =1 _
 Prohibitively slow, memory-intensive

 Option 2: unroll the entire series of updates
» Cost scales with # iterations
» Have to stick to differentiable operations

pass
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Differentiable K-means

 Option 1: differentiate through the fixed-point

condition
ut = pttl
Backward * Prohibitively slow, memory-intensive
pass « Option 2: unroll the entire series of updates

» Cost scales with # iterations
» Have to stick to differentiable operations

« Option 3: get the solution, then unroll one update
» Do anything to solve the forward pass
« Linear time/memory, implemented in vanilla pytorch
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Differentiable K-means

Theorem [informal]: provided the clusters are sufficiently
balanced and well-separated, the Option 3 approximate
gradients converge exponentially quickly to the true ones.

|ldea: show that this corresponds to approximating a particular
term in the analytical fixed-point gradients.
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ClusterNet Approach
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ClusterNet Approach

NVl K-means
S e GCN node ( Locate 1 facility in

: clustering
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ClusterNet Approach
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ClusterNet Approach

N

Update GCN
params

b > ‘mbedding

K-means
clustering

GCN node

A

(

Differentiate
through K-means

N

Loss: quality of
facility
assignment

USC

Locate 1 facility in

\each community
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Example: community detection

max modularity
K
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- - k=1
Observe partial Predict unseen Find
graph edges communities

45
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Example: community detection

max modularity
K

5 S -4
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N k=1
Observe partial Predict unseen Find
graph edges communities

« Useful in scientific discovery (social groups, functional modules
in biological networks)

* In applications, two-stage approach is common:
[Yan & Gegory '12, Burgess et al ‘16, Berlusconi et al ‘16, Tan et al
‘16, Bahulker et al ’18...]
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Experiments

* Learning problem: link prediction

« Optimization: community detection and facility location
problems

 Train GCNSs as predictive component
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Experiments

* Learning problem: link prediction

« Optimization: community detection and facility location
problems

 Train GCNSs as predictive component

« Comparison
» Two stage: GCN + expert-designed algorithm (2Stage)
» Pure end to end: Deep GCN to predict optimal solution (e2e)
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Results: single-graph link prediction

Community detection Facility location
(higher is better) (lower is better)
0.6
>. O 11
T 04 =
= D 9
®) O
S 0.2 x 7
= H B > .
B ClusterNet B 2stage M e2e B ClusterNet B 2stage M e2e

Representative example from cora, citeseer, protein interaction, facebook,
adolescent health networks

Community algos: CNM, Newman, SpectralClustering
Facility Locations algos: greedy, gonzalez2approx
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Results: generalization across graphs

Community detection Facility location
(higher is better) (lower is better)
Q
> S
o 04 3
> D
2" Il MR I
2 O
= 5
B ClusterNet B 2stage M e2e B ClusterNet B 2stage M e2e

ClusterNet learns generalizable strategies for optimization!



Results: optimization only
ClusterNet as a solver

Optimization

cora

cite.

prot.

adol

fb

ClusterNet 0.71
GCN-e2e 0.07
Train-CNM 0.08
Train-Newman 0.20
Train-SC 0.15

ClusterNet learns an effective graph optimization solver!

0.76
0.08
0.34
0.22
0.08

0.52
0.14
0.05
0.29
0.07

0.55
0.15
0.60
0.30
0.46

0.80
0.15
0.80
0.47
0.79

USC
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Takeaways

« Good decisions require integrating learning and optimization
* Pure end-to-end methods miss out on useful structure

» Even simple optimization primitives provide good inductive
bias



ML <= Combinatorial Optimization

USC

Exciting and growing research area

Infusing Discrete Optimization
with Machine Learning

Infusing ML with Constrained
Decision Making
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Integer Programming

Problem Type

Augment discrete optimization
algorithms with learning components

ClusterNET: Differentiable kmeans for
a class graph optimization problems
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Decision-focused learning for
submodular optimization and LP

Learning methods that incorporate the
combinatorial decisions they inform



ML 4= Combinatorial
Optimization

Exciting and growing research area

Design discrete optimization algorithms

with learning components
Learning methods that incorporate the
combinatorial decision making they inform

Thank you!
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