
Graph Representation Learning 
for Optimization on Graphs

Bistra Dilkina

Assistant Professor of Computer Science, USC
Associate Director, USC Center of AI in Society



AI for 
Sustainability and Social Good
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Biodiversity Conservation Disaster resilience Public Health & Well-being

Design of policies to manage limited resources for best 
impact translate into 

large-scale decision / optimization and learning problems, 
combining discrete and continuous effects
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ML          Combinatorial 
Optimization 

‣ Exciting and growing research area

‣ Design discrete optimization 
algorithms with learning components

‣ Learning methods that incorporate 
the combinatorial decision making 
they inform



Constraint Reasoning and 
Optimization
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Wind Farm Layout

Corridor Planning

Integrating renewables 
in Power Grid

Multi-Agent
Systems

No. of atoms
on earth1047
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Decision making problems of larger size and new problem structure
drive the continued need to improve combinatorial solving methods



A realistic setting
• Same problem is solved repeatedly with slightly 

different data
• Delivery Company in Los Angeles: 

• Daily routing in the same area with slightly different 
customers

Tackling NP-Hard problems Design rationale
Exact algorithms Tight formulations, good IP 

solvers 
Approximation algorithms Worst-case guarantees
Heuristics Intuition, Empirical performance

Opportunity:

Automatically tailor algorithms to 
a family of instances to 
discover novel search strategies

Constraint Reasoning and 
Optimization



ML-Driven Discrete Algorithms

Elias B. Khalil*, Hanjun Dai*, Yuyu Zhang, Bistra Dilkina, Le Song.
Learning Combinatorial Optimization Algorithms over Graphs.
NeurIPS, 2017.



Algorithmic Template: Greedy

• Minimum Vertex Cover: Find smallest vertex subset 𝑆 s.t.
each edge has at least one end in 𝑆

• Example: advertising optimization in social networks
• 2-approx: 

greedily add vertices of edge 
with max degree sum 
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Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53
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Learning Greedy Heuristics

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy

algorithm

Joint work with Elias Khalil, Hanjun Dai, Yuyu Zhang and Le Song [NIPS 2017]



Challenge #1: How to Learn

Possible approach: Supervised learning
• Data: collect (partial solution, next vertex) pairs

features label
from precomputed (near) optimal solutions
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PROBLEM
Supervised learning → Need to compute 

good/optimal solutions to NP-Hard 
problems in order to learn!!



Reinforcement Learning Formulation

11

min
%&∈ (,*
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,∈𝓥

𝑥,

𝑠. 𝑡. 𝑥, + 𝑥3 ≥ 1, ∀ 𝑖, 𝑗 ∈ 𝓔

Start with COVER = empty
Repeat until all edges 
covered: 

1. Compute score for each 
vertex

2. Select vertex with 
largest score

3. Add best vertex to COVER

Reward: 𝑟; = −1

State 𝑺: current partial solution

Action value function: ?𝑸(𝑺, 𝒗)

Greedy policy: 
𝑣∗ = 𝑎𝑟𝑔𝑚𝑎𝑥I J𝑄(𝑆, 𝑣)

Update state 𝑆

Minimum 
Vertex 
Cover

SOLUTION
Improve policy by learning from 

experience → no need to compute optima



Challenge #2: How to Represent

• Action value function: J𝑄(𝑆;, 𝑣; Θ)
• Estimate of goodness of vertex 𝑣 in state 𝑆;

• Representation of 𝒗: Feature engineering
• Degree, 2-hop neighborhood size, other centrality measures…
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PROBLEMS
1- Task-specific engineering needed
2- Hard to tell what is a good feature
3- Difficult to generalize across diff. graph sizes



Deep Representation Learning
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degree distribution, triangle counts, distance to tagged nodes, etc. In order to represent such complex
phenomena over combinatorial structures, we will leverage a deep learning architecture over graphs,
in particular the structure2vec of [5], to parameterize bQ(h(S), v;⇥).

3.1 Structure2Vec

We first provide an introduction to structure2vec. This graph embedding network will compute
a p-dimensional feature embedding µv for each node v 2 V , given the current partial solution S. More
specifically, structure2vec defines the network architecture recursively according to an input
graph structure G, and the computation graph of structure2vec is inspired by graphical model
inference algorithms, where node-specific tags or features xv are aggregated recursively according
to G’s graph topology. After a few step of recursion, the network will produce a new embedding for
each node, taking into account both graph characteristics and long-range interactions between these
node features. One variant of the structure2vec architecture will initialize the embedding µ

(0)
v

at each node as 0, and for all v 2 V update the embeddings synchronously at each iteration as

µ
(t+1)
v

 F

⇣
xv, {µ(t)

u
}u2N (v), {w(v, u)}u2N (v) ;⇥

⌘
, (2)

where N (v) is the set of neighbors of node v in graph G, and F is a generic nonlinear mapping such
as a neural network or kernel function.
Based on the update formula, one can see that the embedding update process is carried out based on
the graph topology. A new round of embedding sweeping across the nodes will start only after the
embedding update for all nodes from the previous round has finished. It is easy to see that the update
also defines a process where the node features xv are propagated to other nodes via the nonlinear
propagation function F . Furthermore, the more update iterations one carries out, the farther away
the node features will propagate and get aggregated nonlinearly at distant nodes. In the end, if one
terminates after T iterations, each node embedding µ

(T )
v will contain information about its T -hop

neighborhood as determined by graph topology, the involved node features and the propagation
functino F . An illustration of 2 iterations of graph embedding can be found in Figure 1.

3.2 Parameterizing bQ(h(S), v;⇥)

We now discuss the parameterization of bQ(h(S), v;⇥) using the embeddings fromstructure2vec.
In particular, we design F to update a p-dimensional embedding µv as

µ
(t+1)
v

 relu
�
✓1xv + ✓2

X
u2N (v)

µ
(t)
u

+ ✓3

X
u2N (v)

relu(✓4 w(v, u))
�
, (3)

where ✓1 2 Rp, ✓2, ✓3 2 Rp⇥p and ✓4 2 Rp are the model parameters, and relu is the rectified
linear unit(relu(z) = z if z > 0 and 0 otherwise) applied elementwise to its input. The summation
over neighbors is one way of aggregating neighborhood information invariant to the permutation of
neighbor ordering. For simplicity of exposition, xv here is a binary scalar as described earlier; it is
straightforward to extend xv to a vector representation by incorporating useful node information. To
make the nonlinear transformations more powerful, we can add some more layers of relu before we
pool over the neighboring embeddings µu.
Once the embedding for each node is computed after T iterations, we will use these embeddings to
define the bQ(h(S), v;⇥) function. More specifically, we will use the embeddingµ(T )

v for node v and the
pooled embedding over the entire graph,

P
u2V

µ
(T )
u , as the surrogates for v and h(S), respectively, i.e.

bQ(h(S), v;⇥) = ✓
>
5 relu([✓6

X
u2V

µ
(T )
u

, ✓7 µ
(T )
v

]) (4)

where ✓5 2 R2p, ✓6, ✓7 2 Rp⇥p and [·, ·] is the concatenation operator. Since the embedding µ
(T )
u

is computed based on the parameters from the graph embedding network, bQ(h(S), v) will depend
on a collection of 7 parameters ⇥ = {✓i}7i=1. The number of iterations T for the graph embedding
computation is usually small, such as T = 4.
The parameters ⇥ will be learned. Previously, [5] required a ground truth label for every input graph
G in order to train the structure2vec architecture. There, the output of the embedding is linked
with a softmax-layer, so that the parameters can by trained end-to-end by minimizing the cross-entropy
loss. This approach is not applicable to our case due to the lack of training labels. Instead, we train
these parameters together end-to-end using reinforcement learning.
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𝚯: model parameters

structure2vec
Dai, Hanjun, Bo Dai, and Le Song. "Discriminative embeddings of latent variable models for structured data." ICML. 2016.

𝑣

0

0
1

3

1

Repeat embedding 𝑻 times

Graph embedding



Deep Representation Learning

16

𝚯: model parameters

Compute Q-value:
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Sum-pooling 
over nodes

J𝑄(𝑆;, 𝑣; Θ)

𝑣



Minimum Vertex Cover - BA

S2V-DQN is near-optimal, 
barely visible.

Our Approach
[Vinyals et al. 2015]
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MaxCut - BA

Our Approach
[Vinyals et al. 2015]
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TSP - clustered

Our Approach

[Vinyals et al. 2015]
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Learning-Driven Algorithm Design

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

Takeaways
‣ RL tailors greedy search to family of graph instances
‣ Learn features jointly with greedy policy
‣ Human priors encoded via meta-algorithm (Greedy)



The data-decisions pipeline

Many real-world applications of AI involve a common template:
[Horvitz and Mitchell 2010; Horvitz 2010]

Observe data Predictions Decisions



Data Decisionsargmax
%∈T

𝑓 𝑥, 𝜃

Standard two stage: predict then optimize

Training: maximize accuracy



Data Decisionsargmax
%∈T

𝑓 𝑥, 𝜃

Standard two stage: predict then optimize

Challenge: misalignment between “accuracy” 
and decision quality

Training: maximize accuracy



Data Decisions

Pure end to end: predict decisions directly from input

Training: maximize decision quality



Data Decisions

Pure end to end: predict decisions directly from input

Challenge: optimization is hard to encode in a NN

Training: maximize decision quality



Data Decisions

Decision-focused learning: differentiable optimization during training

argmax
%∈T

𝑓 𝑥, 𝜃

Training: maximize decision quality



Data Decisions

Challenge: how to make optimization 
differentiable?

argmax
%∈T

𝑓 𝑥, 𝜃

Training: maximize decision quality

Decision-focused learning: differentiable optimization during training



Relax + differentiate
Forward pass: run a solver

Backward pass: sensitivity analysis via KKT conditions

Convex QPs [Amos and Kolter 2018, Donti et al 2018]
Linear and submodular programs [Wilder, Dilkina, Tambe 2019]
MAXSAT (via SDP relaxation) [Wang, Donti, Wilder, Kolter 2019]
MIPs [Ferber, Wilder, Dilkina, Tambe 2019]

Some problems don’t have good relaxations
Slow to solve continuous optimization problem
Slow to backprop through – 𝑂(𝑛Y)



Our Alternative

• Learn a representation that maps the original problem 
to a simpler (efficiently differentiable) proxy problem.

• Instantiation for a class of graph problems: k-means 
clustering in embedding space.

Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe.
End to End Learning and Optimization on Graphs.
NeurIPS, 2019.



Graph learning + graph optimization



Problem classes

• Partition the nodes into K disjoint groups
• Community detection, maxcut, …

• Select a subset of K nodes
• Facility location, influence maximization, …

• Methods of choice are often combinatorial/discrete

Approach
• Observation: clustering nodes is a good proxy

• Partitioning: correspond to well-connected subgroups
• Facility location: put one facility in each community

• Observation: graph learning approaches already embed into 𝑅[



ClusterNet Approach

Node embedding 
(GCN)

K-means 
clustering Locate 1 facility in 

each community



Differentiable K-means

Update cluster centers

Softmax update to 
node assignments

Forward 
pass



Differentiable K-means

Backward 
pass

• Option 1: differentiate through the fixed-point 
condition 

𝜇; = 𝜇;]*

• Prohibitively slow, memory-intensive 



Differentiable K-means

Backward 
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• Prohibitively slow, memory-intensive 
• Option 2: unroll the entire series of updates

• Cost scales with # iterations
• Have to stick to differentiable operations 



Differentiable K-means

Backward 
pass

• Option 1: differentiate through the fixed-point 
condition 

𝜇; = 𝜇;]*
• Prohibitively slow, memory-intensive 

• Option 2: unroll the entire series of updates
• Cost scales with # iterations
• Have to stick to differentiable operations 

• Option 3: get the solution, then unroll one update
• Do anything to solve the forward pass
• Linear time/memory, implemented in vanilla pytorch



Differentiable K-means

Theorem [informal]: provided the clusters are sufficiently 
balanced and well-separated, the Option 3 approximate 
gradients converge exponentially quickly to the true ones.

Idea: show that this corresponds to approximating a particular 
term in the analytical fixed-point gradients.
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ClusterNet Approach

GCN node 
embedding
s

K-means 
clustering Locate 1 facility in 

each community

Loss: quality of 
facility 
assignment

Differentiate 
through K-means

Update GCN 
params



Example: community detection

45

Observe partial 
graph

Predict unseen 
edges

Find 
communities

max
^

1
2𝑚 +

`,I∈a

+
bc*

d

𝐴`,I −
𝑑`𝑑I
2𝑚 𝑟 b𝑟Ib

𝑟 b ∈ 0,1 ∀𝑢 ∈ 𝑉, 𝑘 = 1…𝐾

+
bc*

d

𝑟 b = 1 ∀𝑢 ∈ 𝑉

max modularity



Example: community detection

max
^
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`,I∈a

+
bc*

d

𝐴`,I −
𝑑`𝑑I
2𝑚 𝑟 b𝑟Ib

𝑟 b ∈ 0,1 ∀𝑢 ∈ 𝑉, 𝑘 = 1…𝐾

+
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d

𝑟 b = 1 ∀𝑢 ∈ 𝑉

• Useful in scientific discovery (social groups, functional modules 
in biological networks)

• In applications, two-stage approach is common:
[Yan & Gegory ’12, Burgess et al ‘16, Berlusconi et al ‘16, Tan et al 
‘16, Bahulker et al ’18…]

Observe partial 
graph

Predict unseen 
edges

Find 
communities

max modularity



Experiments

• Learning problem: link prediction
• Optimization: community detection and facility location 

problems
• Train GCNs as predictive component



Experiments

• Learning problem: link prediction
• Optimization: community detection and facility location 

problems
• Train GCNs as predictive component

• Comparison
• Two stage: GCN + expert-designed algorithm (2Stage)
• Pure end to end: Deep GCN to predict optimal solution (e2e)



Results: single-graph link prediction

Representative example from cora, citeseer, protein interaction, facebook, 
adolescent health networks

Community algos: CNM, Newman, SpectralClustering
Facility Locations algos: greedy, gonzalez2approx  
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Results: generalization across graphs

ClusterNet learns generalizable strategies for optimization!
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Results: optimization only
ClusterNet as a solver

ClusterNet learns an effective graph optimization solver!



Takeaways

• Good decisions require integrating learning and optimization
• Pure end-to-end methods miss out on useful structure
• Even simple optimization primitives provide good inductive 

bias



Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised 

Reinforcement 

Supervised 

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

Infusing ML with Constrained 
Decision Making

Infusing Discrete Optimization 
with Machine Learning

MIPaaL: MIP as a layer in 
Neural Networks

ClusterNET: Differentiable kmeans for 
a class graph optimization problems

GCN node 
embedding
s

K-means 
clustering Locate 1 facility in 

each community

Loss: quality of 
facility 
assignment

Differentiate 
through K-means

Update GCN 
params

Decision-focused learning for 
submodular optimization and LP

Data Decisionsargmax
&∈(

) *, ,

Training: maximize decision quality

Augment discrete optimization 
algorithms with learning components

Learning methods that incorporate the 
combinatorial decisions they inform

ML          Combinatorial Optimization 
‣ Exciting and growing research area



Thank you!

ML          Combinatorial 
Optimization 

‣ Exciting and growing research area

‣ Design discrete optimization algorithms 
with learning components

‣ Learning methods that incorporate the 
combinatorial decision making they inform


