GRAPH REPRESENTATIONS, BACKPROPAGATION AND BIOLOGICAL PLAUSIBILITY

Marco Gori SAILAB, University of Siena

OUTLINE

- Learning in structured domains
- Diffusion machines and spatiotemporal locality
- Backpropagation diffusion and biological plausibility

LEARNING IN STRUCTURED DOMAINS

Graphs as Pattern Models

What are the features?

Social nets here we need to make prediction at node level!

GRAPH NEURAL NETS

popular and successful mostly thanks to graph convolutional networks

pictures from Z.Wu et al

Non-Euclidean Deep Learning

HISTORICALLY ... ANOTHER PATH WAS FOLLOWED!

Extension of the idea of time unfolding ...

Structure unfolding

The case of binary trees ...

Graph Compiling ...

A recurrent net arises from cyclic graphs The Graph Neural Network Model Gori et al IJCNN 2005, 2009 IEEE-TNN

LEARNING AS A DIFFUSION PROCESS

THE FRAMEWORK OF CONSTRAINED-BASED LEARNING AND THE ROLE OF TIME COHERENCE

there Once we believe in ergodicity . is no distinction between training and test sets!

Natural Laws of Cognition: A Pre-Algorithmic Step

Natural Learning Theory -√→ Mechan- ics	Remarks
$w_i \longrightarrow q_i$	Weights are interpreted as generalized coor- dinates.
$\dot{w}_i \longrightarrow \dot{q}_i$	Weighte variations are interpreted as gener- alized velocities.
$v_i \longrightarrow p_i$	The conjugate momentum to the weights is defined by using the machinery of Legendre transforms.
A(w) S(q)	The cognitive action is the dual of the action in mechanics.
$F(t, w, \dot{w}) L(t, q, \dot{q}) Q$	The Lagrangian F is associated with the classic Lagrangian L in mechanics.
$H(t,w,\upsilon) \swarrow H(t,q,p)$	When using w and v , we can define the Hamiltonian, just like in mechanics.

Constraint Reactions

architectural and environmental constraints

 $\mathcal{L} = \{((0,0),0), ((0,1),1), ((1,0),1), ((1,1),0)\} = \bigcup_{i=1}^{n}$

"hard" architectural constraints $\begin{aligned} x_{\kappa 3} &- \sigma(w_{31}x_{\kappa 1} + w_{32}x_{\kappa 2} + b_3) = 0 \\
x_{\kappa 4} &- \sigma(w_{41}x_{\kappa 1} + w_{42}x_{\kappa 2} + b_4) = 0 \\
x_{\kappa 5} &- \sigma(w_{53}x_{\kappa 3} + w_{54}x_{\kappa 4} + b_4) = 0
\end{aligned}$

training set constraints

$$x_{15} = 1, \ x_{25} = 1, \ x_{35} = 0, \ x_{45} = 0$$

Formulation of Learning

holonomic constraints (DAGs)

 $\mathscr{A}(x,W) := \int \frac{1}{2} (m_x |\dot{x}(t)|^2 + m_W |\dot{W}(t)|^2) \,\varpi(t) dt + \mathscr{F}(x,W)$ $\mathscr{F}(x,W) := \int F(t,x,\dot{x},\ddot{x},W,\dot{W},\ddot{W}) \,dt$

 $G^{j}(t, x(t), W(t)) = 0, \qquad 1 \le j \le \nu$

neural constraints (Einstein's notation)

$$G^{j}(\tau,\xi,M) := \begin{cases} \xi^{j} - e^{j}(\tau), & \text{if } 1 \leq j \leq \omega; \\ \xi^{j} - \sigma(m_{jk}\xi^{k}) & \text{if } \omega < j \leq \nu, \end{cases}$$

Proposition I: Functionally independent for acyclic graphs feedforward nets

Formulation of Learning (con't)

holonomic constraints - any digraph

$$\mathscr{A}(x,W,s) := \frac{\int \frac{1}{2} (m_x |\dot{x}(t)|^2 + m_W |\dot{W}(t)|^2 + m_s |\dot{s}(t)|^2) \,\varpi(t) dt}{\mathscr{F}(x,W,s)} + \frac{\mathscr{F}(x,W,s)}{\mathscr{F}(x,W,s)} := \int F(t,x,\dot{x},\ddot{x},W,\dot{W},\ddot{W},s) \, dt$$

neural constraints $G^{j}(\tau,\xi,M,\zeta) := \begin{cases} \xi^{j} - e^{j}(\tau) + \zeta^{j}, & \text{if } 1 \leq j \leq \omega; \\ \xi^{j} - \sigma(m_{jk}\xi^{k}) + \zeta^{j} & \text{if } \omega < j \leq \nu. \end{cases}$

Proposition 2: Functionally independent for any graph

Formulation of Learning (con't)

Non-holonomic constraints (any digraph)

regularization term loss term $\mathscr{A}(x,W) = \int \left(\frac{m_x}{2}|\dot{x}(t)|^2 + \frac{m_W}{2}|\dot{W}(t)|^2 + F(t,x,W)\right) \,\varpi(t) \, dt$

neural constraints

$$\dot{x}^{i}(t) + cx^{i}(t) - \sigma(w_{ik}(t)x^{k}(t)) = 0 \qquad 0 < c < 1$$

Proposition 3: Functionally independent for any graph

Feedforward Networks (DAGs)

 $-m_x \varpi(t) \ddot{x}(t) - m_x \dot{\varpi}(t) \dot{x}(t) - \lambda_j(t) G_{\xi}^j(x(t), W(t)) + L_F^x(x(t), W(t)) = 0;$ $-m_W \varpi(t) \ddot{W}(t) - m_W \dot{\varpi}(t) \dot{W}(t) - \lambda_j(t) G_M^j(x(t), W(t)) + L_F^W(x(t), W(t)) = 0$

$$\left(\frac{G_{\xi^{a}}^{i}G_{\xi^{a}}^{j}}{m_{x}} + \frac{G_{m_{ab}}^{i}G_{m_{ab}}^{j}}{m_{W}}\right)\lambda_{j} = \varpi\left(G_{\tau\tau}^{i} + 2(G_{\tau\xi^{a}}^{i}\dot{x}^{a} + G_{\tau m_{ab}}^{i}\dot{w}_{ab} + G_{\xi^{a}m_{bc}}^{i}\dot{x}^{a}\dot{w}_{bc}) + G_{\xi^{a}\xi^{b}}^{i}\dot{x}^{a}\dot{x}^{b} + G_{m_{ab}m_{cd}}^{i}\dot{w}_{ab}\dot{w}_{cd}\right) - \dot{\varpi}(\dot{x}^{a}G_{\xi^{a}}^{i} + \dot{w}_{ab}G_{m_{ab}}^{i}) + \frac{L_{F}^{x^{a}}G_{\xi^{a}}^{i}}{m_{x}} + \frac{L_{F}^{w_{ab}}G_{m_{ab}}^{i}}{m_{W}}$$

$$L_F^x = F_x - d(F_{\dot{x}})/dt + d^2(F_{\ddot{x}})/dt^2, L_F^W = F_W - d(F_{\dot{W}})/dt + d^2(F_{\ddot{W}})/dt^2$$

supervised learning $F(t, x, \dot{x}, \ddot{x}, W, \dot{W}, \ddot{W}) = F(t, x) \rightarrow L_F^x = \partial_x F, \quad L_F^w = 0$

Reduction to Backpropagation

A somewhat surprising kinship with the BP delta-error Early discovery by Yan Le Cun, 1989

Euler-Lagrange Equations

non-holonomic constraints

intuition: we need to store the multipliers and provide temporal updating

$$\dot{x}^{i}(t) + cx^{i}(t) - \sigma(w_{ik}(t)x^{k}(t)) = 0;$$

 $\begin{aligned} & \text{BP-like GNN factorization } \delta_j x^i \\ & \dot{W}(t) = -\frac{1}{\gamma} \delta_j(t) G^j_M(t,x(t),W(t),\dot{x}(t)) \end{aligned}$

 $\dot{\delta}(t) = \delta_j(t) G^j_{\xi}(t, x(t), W(t), \dot{x}(t)) + V_{\xi}(t, x(t))$ This makes GNN efficient!

Unlike BPTT and RTRL, learning equations are local in space and time: connections with Equilibrium Propagation (Y. Bengio et al)

DIFFUSION LEARNING AND BIOLOGICAL PLAUSIBILITY

environmental interaction

Biological Plausibility of Backpropagation

BP

Biological concerns should not involve BP, BP diffusion is biologically plausible algorithm is NOT but the instantaneous map $x^{i}(t) = \sigma(w_{ik}x^{k}(t))$ replace with biologically plausible $x^{i}(t) = \sigma(w_{ik}(t-1)x^{k}(t-1))$ $\dot{x}^{i}(t) + cx^{i}(t) - \sigma(w_{ik}(t)x^{k}(t)) = 0$

... clever related comment by Francis Crick, 1989

Conclusions

- GNN: Success due to convolutional graphs, but the "diffusion path" is still worth exploring
- What happens with deep networks in graph compiling?
- Laws of learning, pre-algorithmic issues, and biological plausibility
- Dynamic models for Lagrangian multipliers (always deltaerror): new perspective whenever time-coherence does matter!
- Euler-Lagrangian Learning and SGD

Acknowledgments

Alessandro Betti, SAILAB

Publications

- F. Scarselli et al, "The Graph Neural Network Model," IEEE-TNN, 2009
- A. Betti, M. Gori, and S. Melacci, Cognitive Action Laws: The Case of Visual Features, IEEE-TNNLS 2019
- A. Betti, M. Gori, and S. Melacci, Motion Invariance in Visual Environment, IJCAI 2019
- A. Betti and M. Gori, Backprop Diffusion is Biologically Plausible, arXiv:1912.04635
- A. Betti and M. Gori, Spatiotemporal Local Propagation, arXiv: 1907.05106

Software

Preliminary version

A CONSTRAINT-BASED APPROACH

Marco Gori