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Fig. 1. Typical chemical compound, naturally represented by an undirected
graph.

tionist models, that we refer to as recursive neural networks,1
while in the probabilist setting, hidden Markov models are
extended to hidden recursive models. Applications of adaptive
recursive processing are reviewed in Section V. Finally, some
guidelines for further development of the theory proposed in
this paper are outlined in Section VI.

A. Learning from Structured Information:
Application Domains
In several application domains, the information which is

relevant for solving a given problem is encoded, sometimes
implicitly, into the relationships between basic entities.
Example 1.1 Chemistry: Chemical compounds are usually

represented as undirected graphs. Each node of the graph is an
atom or a group of atoms, while arcs represent bonds between
atoms (see Fig. 1).
One fundamental problem in chemistry is the prediction of

the biological activity of chemical compounds. quantitative
structure-activity relationship (QSAR) is an attempt to face
the problem relying on compound structures. The biological
activity of a drug is fully determined by the micromechanism
of interaction of the active molecules with the bioreceptor.
Unfortunately, discovering this micromechanism is very hard
and expensive. Hence, because of the assumption that there is
a direct correlation between the activity and the structure of
the compound, the QSAR approach is a way of approaching
the problem by comparing the structure of all known active
compounds with inactive compounds, focusing on similarities
and differences between them. The aim is to discover which
substructure or which set of substructures characterize the
biomechanism of activity, so as to generalize this knowledge
to new compounds.
Example 1.2 Software Engineering: Another very impor-

tant example of an application which uses structured infor-
mation is certainly software engineering. One of the major
goals of software engineering is to evaluate the quality of the
software. This evaluation is usually based on metrics that are
correlated with properties of interest. A number of metrics
(see, e.g., McCabe complexity [2]) have been developed
which try to codify the above properties of a (portion of)
program numerically. These features are usually based on an
1As detailed in the following, recurrent neural networks and recursive

neural networks reduce to the same model when the domain is restricted to
sequences. For historical reasons, however, we shall use the name recurrent
neural networks when referring to models operating on sequences.

Fig. 2. A portion of software code with the corresponding flowgraph.
Metrics for the software evaluation turn out to be functions acting on
graph-based domains.

intermediate representation which has the advantage of being
(in some sense) independent of the specific language, while
preserving the essential static and dynamic aspects of the
program. One example of intermediate representation is given
by dependence graphs. In a dependence graph, statements
are represented as nodes, while directed edges are used to
represent the statement ordering implied by the dependencies
in a source program. Depending on the specific application,
different kinds of dependence graphs can be used (e.g., control
flow graphs, control dependence graphs, data dependence
graphs, and instance dependence graphs).
It is commonly accepted that most procedural languages

can be expressed as a flowgraph using a number of basic
elements, such as decision node, junction node, and begin and
end node [3]. Let be the set of flowgraphs derived by all
possible programs (see, e.g., Fig. 2). A software metric is
a function used to estimate the complexity of
a portion of software. The aim is to use as an indicator
of the quality, testability, reusability, and maintainability of
the program.
Example 1.3 Problem Solving in Artificial Intelligence: A

rich source of applications based on structured information
are those related to problem solving in artificial intelligence.
One often has to perform a search in a tree which typically
gives rise to a combinatorial explosion of the search space.
Examples of systems based on such expensive search are
theorem provers, deductive databases, and expert systems. For
all these systems we should search for a solution, or a proof,
by exploring every branch of the search tree defined by the
problem at hand (see, e.g., Fig. 13 in Section V-B). Exhaustive
search guarantees completeness, i.e., if there is a solution, it
will be found within finite time. This brute force approach,
however, is only practical and feasible for problems of small
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Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured
data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in
the data processing step. Recursive neural networks [17], [19],
[20] and Markov chains [18], [21], [22] belong to this set of tech-
niques and are commonly applied both to graph and node-fo-
cused problems. The method presented in this paper extends
these two approaches in that it can deal directly with graph struc-
tured information.

Existing recursive neural networks are neural network models
whose input domain consists of directed acyclic graphs [17],
[19], [20]. The method estimates the parameters of a func-
tion , which maps a graph to a vector of reals. The approach
can also be used for node-focused applications, but in this case,
the graph must undergo a preprocessing phase [23]. Similarly,
using a preprocessing phase, it is possible to handle certain types
of cyclic graphs [24]. Recursive neural networks have been ap-
plied to several problems including logical term classification
[25], chemical compound classification [26], logo recognition
[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector
machines [30]–[32], which adopt special kernels to operate on
graph structured data. For example, the diffusion kernel [33] is
based on heat diffusion equation; the kernels proposed in [34]
and [35] exploit the vectors produced by a graph random walker
and those designed in [36]–[38] use a method of counting the
number of common substructures of two trees. In fact, recursive
neural networks, similar to support vector machine methods,
automatically encode the input graph into an internal represen-
tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed
by the user.

On the other hand, Markov chain models can emulate
processes where the causal connections among events are
represented by graphs. Recently, random walk theory, which
addresses a particular class of Markov chain models, has been
applied with some success to the realization of web page
ranking algorithms [18], [21]. Internet search engines use
ranking algorithms to measure the relative “importance” of
web pages. Such measurements are generally exploited, along
with other page features, by “horizontal” search engines, e.g.,
Google [18], or by personalized search engines (“vertical”
search engines; see, e.g., [22]) to sort the universal resource
locators (URLs) returned on user queries.2 Some attempts have
been made to extend these models with learning capabilities
such that a parametric model representing the behavior of
the system can be estimated from a set of training examples
extracted from a collection [22], [40], [41]. Those models are
able to generalize the results to score all the web pages in the
collection. More generally, several other statistical methods
have been proposed, which assume that the data set consists of
patterns and relationships between patterns. Those techniques
include random fields [42], Bayesian networks [43], statistical
relational learning [44], transductive learning [45], and semisu-
pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,
which is suitable for both graph and node-focused applications.
This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].
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works. To handle the complexity of graph data, new gen-
eralizations and definitions for important operations have
been rapidly developed over the past few years. For in-
stance, Figure 1 illustrates how a kind of graph convolution
is inspired by a standard 2D convolution. This survey aims
to provide a comprehensive overview of these methods, for
both interested researchers who want to enter this rapidly
developing field and experts who would like to compare
graph neural network algorithms.

A Brief History of Graph Neural Networks The nota-
tion of graph neural networks was firstly outlined in Gori
et al. (2005) [16], and further elaborated in Micheli (2009)
[17] and Scarselli et al. (2009) [18]. These early studies learn
a target node’s representation by propagating neighbor in-
formation via recurrent neural architectures in an iterative
manner until a stable fixed point is reached. This process
is computationally expensive, and recently there have been
increasing efforts to overcome these challenges [19], [20]. In
our survey, we generalize the term graph neural networks to
represent all deep learning approaches for graph data.

Inspired by the huge success of convolutional networks
in the computer vision domain, a large number of methods
that re-define the notation of convolution for graph data have
emerged recently. These approaches are under the umbrella
of graph convolutional networks (GCNs). The first promi-
nent research on GCNs is presented in Bruna et al. (2013),
which develops a variant of graph convolution based on
spectral graph theory [21]. Since that time, there have been
increasing improvements, extensions, and approximations
on spectral-based graph convolutional networks [12], [14],
[22], [23], [24]. As spectral methods usually handle the
whole graph simultaneously and are difficult to parallel
or scale to large graphs, spatial-based graph convolutional
networks have rapidly developed recently [25], [26], [27],
[28]. These methods directly perform the convolution in the
graph domain by aggregating the neighbor nodes’ informa-
tion. Together with sampling strategies, the computation can
be performed in a batch of nodes instead of the whole graph
[25], [28], which has the potential to improve efficiency.

In addition to graph convolutional networks, many alter-
native graph neural networks have been developed in the
past few years. These approaches include graph attention
networks, graph autoencoders, graph generative networks,
and graph spatial-temporal networks. Details on the catego-
rization of these methods are given in Section 3.

Related surveys on graph neural networks. There are
a limited number of existing reviews on the topic of graph
neural networks. Using the notation geometric deep learning,
Bronstein et al. [8] give an overview of deep learning
methods in the non-Euclidean domain, including graphs
and manifolds. While being the first review on graph con-
volution networks, this survey misses several important
spatial-based approaches, including [15], [20], [25], [27],
[28], [29], which update state-of-the-art benchmarks. Fur-
thermore, this survey does not cover many newly devel-
oped architectures which are equally important to graph
convolutional networks. These learning paradigms, includ-
ing graph attention networks, graph autoencoders, graph
generative networks, and graph spatial-temporal networks,
are comprehensively reviewed in this article. Battaglia et

(a) 2D Convolution. Analo-
gous to a graph, each pixel
in an image is taken as a
node where neighbors are de-
termined by the filter size.
The 2D convolution takes a
weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of
a node are ordered and have a
fixed size.

(b) Graph Convolution. To get
a hidden representation of the
red node, one simple solution
of graph convolution opera-
tion takes the average value
of node features of the red
node along with its neighbors.
Different from image data, the
neighbors of a node are un-
ordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

al. [30] position graph networks as the building blocks for
learning from relational data, reviewing part of graph neu-
ral networks under a unified framework. However, their
generalized framework is highly abstract, losing insights on
each method from its original paper. Lee et al. [31] conduct
a partial survey on the graph attention model, which is
one type of graph neural network. Most recently, Zhang et
al. [32] present a most up-to-date survey on deep learning
for graphs, missing those studies on graph generative and
spatial-temporal networks. In summary, none of the existing
surveys provide a comprehensive overview of graph neural
networks, only covering some of the graph convolution
neural networks and examining a limited number of works,
thereby missing the most recent development of alternative
graph neural networks, such as graph generative networks
and graph spatial-temporal networks.

Graph neural networks vs. network embedding The
research on graph neural networks is closely related to
graph embedding or network embedding, another topic
which attracts increasing attention from both the data min-
ing and machine learning communities [33] [34] [35] [36],
[37], [38]. Network embedding aims to represent network
vertices into a low-dimensional vector space, by preserving
both network topology structure and node content informa-
tion, so that any subsequent graph analytics tasks such as
classification, clustering, and recommendation can be easily
performed by using simple off-the-shelf machine learning
algorithm (e.g., support vector machines for classification).
Many network embedding algorithms are typically unsu-
pervised algorithms and they can be broadly classified into
three groups [33], i.e., matrix factorization [39], [40], ran-
dom walks [41], and deep learning approaches. The deep
learning approaches for network embedding at the same
time belong to graph neural networks, which include graph
autoencoder-based algorithms (e.g., DNGR [42] and SDNE
[43]) and graph convolution neural networks with unsuper-
vised training(e.g., GraphSage [25]). Figure 2 describes the
differences between network embedding and graph neural

pictures from Z. Wu et al
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works. To handle the complexity of graph data, new gen-
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stance, Figure 1 illustrates how a kind of graph convolution
is inspired by a standard 2D convolution. This survey aims
to provide a comprehensive overview of these methods, for
both interested researchers who want to enter this rapidly
developing field and experts who would like to compare
graph neural network algorithms.

A Brief History of Graph Neural Networks The nota-
tion of graph neural networks was firstly outlined in Gori
et al. (2005) [16], and further elaborated in Micheli (2009)
[17] and Scarselli et al. (2009) [18]. These early studies learn
a target node’s representation by propagating neighbor in-
formation via recurrent neural architectures in an iterative
manner until a stable fixed point is reached. This process
is computationally expensive, and recently there have been
increasing efforts to overcome these challenges [19], [20]. In
our survey, we generalize the term graph neural networks to
represent all deep learning approaches for graph data.

Inspired by the huge success of convolutional networks
in the computer vision domain, a large number of methods
that re-define the notation of convolution for graph data have
emerged recently. These approaches are under the umbrella
of graph convolutional networks (GCNs). The first promi-
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which develops a variant of graph convolution based on
spectral graph theory [21]. Since that time, there have been
increasing improvements, extensions, and approximations
on spectral-based graph convolutional networks [12], [14],
[22], [23], [24]. As spectral methods usually handle the
whole graph simultaneously and are difficult to parallel
or scale to large graphs, spatial-based graph convolutional
networks have rapidly developed recently [25], [26], [27],
[28]. These methods directly perform the convolution in the
graph domain by aggregating the neighbor nodes’ informa-
tion. Together with sampling strategies, the computation can
be performed in a batch of nodes instead of the whole graph
[25], [28], which has the potential to improve efficiency.

In addition to graph convolutional networks, many alter-
native graph neural networks have been developed in the
past few years. These approaches include graph attention
networks, graph autoencoders, graph generative networks,
and graph spatial-temporal networks. Details on the catego-
rization of these methods are given in Section 3.

Related surveys on graph neural networks. There are
a limited number of existing reviews on the topic of graph
neural networks. Using the notation geometric deep learning,
Bronstein et al. [8] give an overview of deep learning
methods in the non-Euclidean domain, including graphs
and manifolds. While being the first review on graph con-
volution networks, this survey misses several important
spatial-based approaches, including [15], [20], [25], [27],
[28], [29], which update state-of-the-art benchmarks. Fur-
thermore, this survey does not cover many newly devel-
oped architectures which are equally important to graph
convolutional networks. These learning paradigms, includ-
ing graph attention networks, graph autoencoders, graph
generative networks, and graph spatial-temporal networks,
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termined by the filter size.
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ues of the red node along with
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a node are ordered and have a
fixed size.

(b) Graph Convolution. To get
a hidden representation of the
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of graph convolution opera-
tion takes the average value
of node features of the red
node along with its neighbors.
Different from image data, the
neighbors of a node are un-
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al. [30] position graph networks as the building blocks for
learning from relational data, reviewing part of graph neu-
ral networks under a unified framework. However, their
generalized framework is highly abstract, losing insights on
each method from its original paper. Lee et al. [31] conduct
a partial survey on the graph attention model, which is
one type of graph neural network. Most recently, Zhang et
al. [32] present a most up-to-date survey on deep learning
for graphs, missing those studies on graph generative and
spatial-temporal networks. In summary, none of the existing
surveys provide a comprehensive overview of graph neural
networks, only covering some of the graph convolution
neural networks and examining a limited number of works,
thereby missing the most recent development of alternative
graph neural networks, such as graph generative networks
and graph spatial-temporal networks.

Graph neural networks vs. network embedding The
research on graph neural networks is closely related to
graph embedding or network embedding, another topic
which attracts increasing attention from both the data min-
ing and machine learning communities [33] [34] [35] [36],
[37], [38]. Network embedding aims to represent network
vertices into a low-dimensional vector space, by preserving
both network topology structure and node content informa-
tion, so that any subsequent graph analytics tasks such as
classification, clustering, and recommendation can be easily
performed by using simple off-the-shelf machine learning
algorithm (e.g., support vector machines for classification).
Many network embedding algorithms are typically unsu-
pervised algorithms and they can be broadly classified into
three groups [33], i.e., matrix factorization [39], [40], ran-
dom walks [41], and deep learning approaches. The deep
learning approaches for network embedding at the same
time belong to graph neural networks, which include graph
autoencoder-based algorithms (e.g., DNGR [42] and SDNE
[43]) and graph convolution neural networks with unsuper-
vised training(e.g., GraphSage [25]). Figure 2 describes the
differences between network embedding and graph neural
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ii. h(t) = e

�t/✏

Let us assume that � = 0 in the kinetic energy 17 and h(t) = e

�t/✏. In
particular we consider the action

A =

Z T

0
dt e

�t/✏

✓
1

2
✏

2
⇢q̈

2 +
1

2
✏⌫q̇

2 + V (q, t)

◆
(22)

In this case the Lagrange equations turn out to be

✏

2
⇢q

(4) � 2✏⇢q(3) + (⇢� ✏⌫)q̈ + ⌫q̇ + �Vp = 0, (23)

along with the boundary conditions

✏

2
⇢q̈(T ) = 0 (24)

✏⌫q̈(T )� ⇢✏

2
q

3(T ) = 0. (25)

Interesting, as ✏ ! 0 the Euler-Lagrange equations become:

⇢q̈ + ⌫q̇ + �Vp = 0, (26)

where the boundary conditions are always satisfied.

Remark 1. Notice that while we can choose the parameters in such a way that
Eq. 18 is stable, the same does not hold for Eq. 23. Interestingly, stability can
be gained for ✏ = 0, which is corresponds with a singular solution. Basically if
we denote by q✏ the solution associated with ✏ 2 R, we have that q✏ does not
approximate q corresponding at ✏ = 0 in case in which we can choose arbitrarily
large domains [0, T ].

5 Conclusions

While machine learning is typically framed in the statistical setting, in this case
time is exploited in such a way that one relies on a sort of underlying ergodic
principle according to which statistical regularities can be captured in time.
This paper shows that the continuous nature of time gives rise to computational
models of learning that can be interpreted as laws of nature. Unlike traditional
stochastic gradient, the theory suggests that, just like in mechanics, learning is
driven by the Euler-Lagrange equations that minimize a sort of functional risk.
The collapsing from forth- to second-order di↵erential equations opens the doors
to an in-depth theoretical and experimental investigation.
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Table 6.3 Links between the natural learning theory and classical mechanics.

Natural Learning Theory ! Mechan-
ics

Remarks

wi ! qi Weights are interpreted as generalized coor-
dinates.

ẇi ! q̇i Weights variations are interpreted as gener-
alized velocities.

υi ! pi The conjugate momentum to the weights is
defined by using the machinery of Legendre
transforms.

A(w) ! S(q) The cognitive action is the dual of the action
in mechanics.

F(t, w, ẇ) ! L(t, q, q̇) The Lagrangian F is associated with the
classic Lagrangian L in mechanics.

H(t, w, υ) ! H(t, q, p) When using w and υ, we can define the
Hamiltonian, just like in mechanics.

As it will be shown later, these conditions can be guaranteed if we assume that long-life learn-
ing undergoes a day–night rhythm scheme. Such a scheme follows the corresponding human
metaphor: The perceptual information is only provided during the day, while the agent “sleeps”
at night without receiving any perceptual information, which is translated into the condition
ẋ = 0. We assume to undergo a long-life learning scheme which repeats days of life according
to the above rhythmic scheme. Before discussing this assumption, we start noticing that in per-
ceptual tasks, the day-night rhythm doesn’t alter the semantics that can be captured from the
environmental information flow. Hence, just like an uninterrupted flow, this rhythmic interac-
tion keeps the semantics, but favors the simplicity and the effectiveness of learning processes,
since the lack of night stimulus facilitates the verification of the condition (6.5.162) on the
right border. Unlike an uninterrupted flow, the day–night rhythm allows us small weight up-
dates from consecutive days. Hence, if w(tκ ) is the weight vector at the end of day κ , the
day after, the weight w(tκ+1) ≃ w(tκ ), which facilitates the approximation of the condition
ẇ(t = tκ+2) = 0. Now let’s write the equations of the weights wi(t) of the synaptic connec-
tions.

If we pose D = d/dt then the Euler–Lagrange equation DF ′
wi

−F ′
i = 0 becomes

miẅi + ζ̇

ζ
ẇi + V ′

wi
= 0. (6.5.163)

As we can see, the developmental function ζ , which is always positive, strongly af-
fects the neurodynamics. In order to start understanding its effect, suppose that there
is no focus of attention, that is, dϕ(ẋ(t))/dt := ϕ̇ = 0. In this case the above equation
reduces to

miẅi + ρ̇

ρ
ẇi + V ′

wi
= miẅi + θẇi + V ′

wi
= 0, (6.5.164)

Natural Laws of Cognition: A Pre-Algorithmic Step
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basis of the profile x 2 X of the individual (x, x). We assume that we are
given a finite collection of vector-based data X = {x



2 IR

d

,  = 1, . . . , `} that
belong to either a or b. Supervised learning is defined by the training set, that
can be expressed in terms of the unary predicates a(xa



) and b(xb



). Interest-
ingly, as shown in the following example, we can interpret the neural network
architecture itself as a collection of constraints.

Example 4.1 Let us consider the XOR predicate that is characterized by

y((0, 1), (1, 0))

¬y((0, 0), (1, 1)).
(1)

Now we can express the neural architecture of Fig. ?? by the constraints

x3 � �(w31x1 + w32x2)� b3 = 0

x4 � �(w41x1 + w42x2)� b4 = 0

x5 � �(w53x3 + w54x4)� b5 = 0.

(2)

Notice that while the data constraints (1) are often softly enforced, the architecture
constraints (2) are better suited for hard satisfaction. Clearly, this distinction between
data and architectural constraints holds in general, while one might claim in this case
also the data constraints would better be hardly enforced.

As put forward in the following example, one might also be interested in
classifications that involve more categories that are not necessary disjoint.

Example 4.2 Classification of four rectangles intersecting

Description: Given the four rectangles represented in figure (3) we want to
classify the points of the domain in four classes. Since the rectangles are intersect
themselves, this is not a classic clustering problem. We have the following
ground truth:

A(x) = true , x 2 [�3, +1] ⇥ [�1, +1],

B(x) = true , x 2 [�1, +3] ⇥ [�1, +1],

C(x) = true , x 2 [�1, +1] ⇥ [�1, +3],

D(x) = true , x 2 [�1, +1] ⇥ [�3, +1].

(3)

Domain Representation: As domain we consider 900 points in a uniform grid
of the square [�3, 3] ⇥ [�3, 3], and we take 100 random points from them to
create the testing set. The remaining points form the training set S.

SUPERVISED LEARNING

In this case we want to classify the points of the square [�3, 3] ⇥ [�3, 3] using
only few supervisions.
Domain Representation: We take six supervisions for each class, three positive
and three negative from the training set S. Formally we define the following

16
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FIGURE 5.4

Network for the evaluation of the XOR.

Unlike in the case of ∧ and ∨, the set

L = {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)} =

is clearly not linearly separable. Formally, this comes out directly when considering
that for any candidate separation line, the following proposition must hold:

(b < 0) ∧ (w2 + b) > 0 ∧ (w1 + b) > 0 ∧ (w1 + w2 + b < 0).

Now it is easy to see that there is no solution. If we sum up the second and the third
inequalities, we get w1 +w2 +2b > 0. Likewise, if we sum up the first and the fourth
inequalities, we get w1 + w2 + 2b < 0, so we end up with a contradiction. Hence,
we conclude that W⊕ = ∅. A nice graphical interpretation of W⊕ = ∅ is given in
Exercise 4.

The above discussion essentially proves that we cannot compute the XOR function
using a single LTU. We will now show that instead there are many ways to represent
the XOR using a multilayered network (Fig. 5.4).

Looking at Fig. 5.4, we immediately realize that input x1 and x2 must be mapped
by the hidden layer to x3 and x4 such that it can be linearly separated by the neuron 5.
For example, in Fig. 5.5A it is shown how this can be done using a “geometrical”
approach; here the two evenly dashed lines have equations x1 + x2 + 1/2 = 0 and
x1+x2+3/2 = 0. Neurons 3 and 4 classify the points of the Boolean square according
to the rule x3 = [x1 + x2 − 1/2 ≥ 0] and x4 = [−x1 − x2 + 3/2 ≥ 0]; in this way,
as one can see from Fig. 5.5A, the inputs are mapped into a separable configuration.

Another way to implement the XOR function can be done by noting that both ¬x1∧
x2 and x1 ∧ ¬x2 can be represented by an LTU with the Heaviside function. This is
a straightforward consequence of the above discussed representations of ∧ and ∨ by
threshold functions. We can promptly see that a function for the realization of ⊕ can
be constructed by using the canonical representation x1⊕x2 = (¬x1∧x2)∨(x1∧¬x2).

Now let us begin with the construction of (¬x1 ∧ x2) and (x1 ∧ ¬x2). When
thinking of the ∧ and ∨ realization, we can promptly realize that the solution is
similar, since any min-term is linearly separable. In Fig. 5.5B we can see the lines
corresponding with the two min-terms and the mapping of each example onto the
hidden layer representation. The line corresponding to the neuron 3 has equation
−x1 + x2 − 1/2 = 0, while the one that corresponds to 4 has equation x1 − x2 −
1/2 = 0; in fact, we have ¬x1 ∧ x2 = [−x1 + x2 − 1/2 ≥ 0] and x1 ∧ ¬x2 =
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= 0 for j = 1, . . . , ⌫ specify the computational scheme with which the information
diffuses trough the network. In a typical network with ! inputs these constraints are defined as
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Our goal here is to show that such relations, that normally are considered just a local description of
the compositional structure of the NN, once properly interpreted as constraints in the space x�W

(see Fig. 1) are suitable holonomic subsidiary conditions in the sense of (2).
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regard this variable as time (x1
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Notice that this result heavily depends on the assumption W 2 M#
⌫

(R); however
we will now discuss how the introduction of an additional variable that mod-
els the degree of satisfaction of the neural constraints acts as a regularizer of
constraints (8) and ensure the satisfaction of (2).

Recurrent networks. Let us suppose that we also assign to each neuron a
variable s that measure the degree of violation of the constraint. Then Eq. (10)
assumes the form G

j

(t, x,W, s) = 0, j = 1, 2, . . . , ⌫ where

G

j

(⌧, ⇠,M, ⇣) :=

(
⇠

j � e

j

(⌧) + ⇣

j

, if 1  j  !;
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j if ! < j  ⌫.

(11)

In doing so it is important to notice that Proposition 1 holds without the
assumption that M 2 M#

⌫

(R) as it is immediate to prove since G

j

⇣

i

= �

ij

, which
is of course full rank. This important remark opens the possibility to extend the
theory to networks with “feedback” connections based on general simple digraphs.

In this formulation of the theory the action, described in Eq. (9) must be
modified to take into account of the introduction of the new variable s:

A (x,W, s) :=
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|ẋ(t)|2 +m
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| ˙W (t)|2 +m
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|ṡ(t)|2)$(t)dt+ F (x,W, s),

(12)
where F (x,W, s) :=

R
F (t, x, ẋ, ẍ,W,

˙

W,

¨

W, s) dt.
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6 Dynamical constraints

Till this moment we have considered, to model both FNN and RNN holonomic
constraints that impose an instantaneous relations between the variable of the
problem. Indeed constraints like those of Eq. (10) imply an infinite velocity of
diffusion of information.

Since we are stressing the importance of time in learning processes it there-
fore comes natural to define assume that, instead, the velocity of diffusion of
information through a network is finite. In a time discrete scenario this basically
means that the computations of the state x at time t must be computed in terms
of the states at temporal instant t� 1 namely

x

i
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ik

(t� 1)x

k

(t� 1)).

A simple translation of this constraint in continuous time can be taken to be
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In stationary situation indeed Eq. (32) coincide with the usual neuron equation
in Eq. (10).

From a mathematical point of view, however this is a much more complicated
constraint, since not only it involves the variables x and w, but also their
derivatives. Such constraints are called nonholonomic constraints.

We will now show how to write the stationarity conditions of the functional
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making use of the rule of the Lagrange multipliers. As usual we consider the
stationary points of the functional
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If, as we did before, we assume that F (t, x,W ) = �V (t, x), $(t) = e
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This systems of equations can be better interpreted in the limit in which we
recovered the backprop rule in Section 4; that is to say in the limit m
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In this form we can indeed appreciate the crucial difference of this dynamical
theory with respect to the theory we have defined using holonomic constraints: The
equation that defines the Lagrange multipliers � is now a differential equation that
explicitly gives us the correct updating rule instead of a instantaneous equation
that must be solved for each t. In the previous section in order to achieve such
dynamics for � we introduced an ad hoc gradient dynamics that was going in the
direction of solving the linear equation for the �.

6 Conclusions

This paper proposes a novel formulation of learning by differential equations
instead of by the dominating approach of using finite-dimensional optimization.
This can be traced back many contributions that early appeared at the of the
eighties (see e.g. [3] and [4]), as well as from the recent trend of emphasizing
continuous-based computational models of learning (see e.g. [5]4. The distinctive
view proposed in this paper consists of the close parallel with mechanics, that
arises from the general principle of formulating variational laws of nature. The
STLP computational scheme possesses the distinctive feature of being local in
both space and time. Moreover, the gained space locality property goes beyond the
classic local neural communication required for computing the gradient. Unlike
BP, there is no need to synchronize the forward and backward step that return
the factors of the gradient, since they are locally available. The theory nicely
addresses classic arguments on BP biologically plausibility [10], and opens the
doors to an in-depth reformulation of learning algorithms for both feedforward
and recurrent neural networks.
4 Best student paper awards at NeurIPS 2018.

0 < c < 1
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Notice that this result heavily depends on the assumption W 2 M#
⌫

(R); however we will now
discuss how the introduction of an additional variable that models the degree of satisfaction of the
neural constraints acts as a regularizer of constraints (8) and ensure the satisfaction of (2).

Recurrent networks. Let us suppose that we also assign to each neuron a variable s that measure
the degree of violation of the constraint. Then Eq. (10) assumes the form G
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opens the possibility to extend the theory to networks with “feedback” connections based on general
simple digraphs.

In this formulation of the theory the action, described in Eq. (9) must be modified to take into account
of the introduction of the new variable s:
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4 Cognitive action and laws of learning: Feedforward architecture

In the previous section we concentrated ourselves on showing that the set of constraints that define
a NN are good constraints (in the sense of (2)). In this section we will focus on the feedforward
case described by the functional (9) together with constraints (10). In particular we will discuss the
updates rules (Euler-Lagrange equations) for the variables x and W derived from the stationarity
conditions of the functional (9). We notice in passing that when imposing the stationarity of action
�A = 0 we give rise to a computational model that, in general, is remarkably different from classic
optimization approaches used in machine learning, that are typically driven by the gradient heuristics.
Basically, the models arising from �A = 0, instead of gradually reducing the action from its initial
value, satisfy this condition for any time instant, thus resembling what happens for Newtonian’s laws.

We begin by deriving the constrained Euler-Lagrange (EL) equations associated with the functional (9)
under subsidiary conditions (10). The constrained functional is
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Ẅ

)/dt
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derivatives of F with respect to x and W respectively (see (9)). An expression for Lagrange multiplies,
as it is explained in Section 2 is derived by differentiating two times the constraint with respect to the
time and using the obtained expression to substitute the second order terms in the Euler equations. In
this case the analogue of Eq. (6) is
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ẇ

cd

�

� $̇(ẋ

a

G

i

⇠

a

+ ẇ
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|ẋ(t)|2 +m

W

| ˙W (t)|2 +m

s
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with learning rate 1/�. Notice that the presence of the term $(t) that we proposed in the general
theory it is essential in order to have a learning behaviour as it produce dissipation.

Typically the term V
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(t,W (t)) in Eq. (23) can be evaluated using the Backpropagation algorithm;
we will now show that Eq. (14)–(16) in the same limit used above m
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reproduces Eq. (23) where the term V
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order to see this choose # = �/m
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. This matrix is upper triangular matrix thus showing explicitly showing the
backward structure of the propagation of the delta error of the Backpropagation algorithm. Indeed in
Eq. (24) the Lagrange multiplier � plays the role of the delta error.

In order to better understand the perfect reduction of our approach to the backprop algorithm consider
the following example.
Example 4. Consider the FNN based on the dag P3~ with an input, an output and an hidden neuron.
In this case the matrix T is

T =

0

@
1 ��0

(w21x
1
)w21 0
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)w32
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.

Then according to Eq. (26) the Lagrange multipliers are derived as follows
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3
;
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0
(w32x

2
)w32�3;

�1 = �

0
(w21x

1
)w21�2.

This is exactly the Backpropagation formulas for the delta error. Notice that in this theory we also
have an expression for the multipliers of the input neurons, even though, in this case, they are not
used to update the weights (see Eq. (24)).

4.1 Diffusion and Locality

Looking at Eq. (26) it is apparent how the computations of the Lagrange multipliers follows a
diffusion-like scheme along the network. Indeed as we saw in example 4 the value of the multiplier
on a neuron only depends on the values of the multipliers on the children neurons and on the value of
the state vectors and weighs around the neuron.

This local structure of the matrix in front of the multipliers is actually a general property that depends
on the graphical structure of the network and is true also in general case when you have
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In this case it is not immediately apparent how you can use the locality of the terms that defined this
matrix in order to make the diffusion process that defined the � (or the �s). In order to see this we
need (following the same ideas presented in [cita altro articolo] and as we will see in the next section)
to unroll in time the instantaneous equations that defines the Lagrange multipliers. In order to do this
we could imagine to solve Eq. (16) using a gradient descent approach and we can also imagine to
perform the steps of the gradient algorithms in the temporal direction. Indeed a linear system A� = v

can be though as the solution of the minimization problem 1
2 (A� � v)

2; this problem in turn can be
solved with a gradient method to updated the values of � till we reach the desired values that solves
the system. The update rules for the deltas is (the gradient of the quadratic target function)

�  � �A

0
(A� � v). (27)
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This systems of equations can be better interpreted in the limit in which we
recovered the backprop rule in Section 4; that is to say in the limit m
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In this form we can indeed appreciate the crucial difference of this dynamical
theory with respect to the theory we have defined using holonomic constraints: The
equation that defines the Lagrange multipliers � is now a differential equation that
explicitly gives us the correct updating rule instead of a instantaneous equation
that must be solved for each t. In the previous section in order to achieve such
dynamics for � we introduced an ad hoc gradient dynamics that was going in the
direction of solving the linear equation for the �.

6 Conclusions

This paper proposes a novel formulation of learning by differential equations
instead of by the dominating approach of using finite-dimensional optimization.
This can be traced back many contributions that early appeared at the of the
eighties (see e.g. [3] and [4]), as well as from the recent trend of emphasizing
continuous-based computational models of learning (see e.g. [5]4. The distinctive
view proposed in this paper consists of the close parallel with mechanics, that
arises from the general principle of formulating variational laws of nature. The
STLP computational scheme possesses the distinctive feature of being local in
both space and time. Moreover, the gained space locality property goes beyond the
classic local neural communication required for computing the gradient. Unlike
BP, there is no need to synchronize the forward and backward step that return
the factors of the gradient, since they are locally available. The theory nicely
addresses classic arguments on BP biologically plausibility [10], and opens the
doors to an in-depth reformulation of learning algorithms for both feedforward
and recurrent neural networks.
4 Best student paper awards at NeurIPS 2018.
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˙

�(t) = �

j

(t)G

j

⇠

(t, x(t),W (t), ẋ(t)) + V
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In this form we can indeed appreciate the crucial difference of this dynamical
theory with respect to the theory we have defined using holonomic constraints: The
equation that defines the Lagrange multipliers � is now a differential equation that
explicitly gives us the correct updating rule instead of a instantaneous equation
that must be solved for each t. In the previous section in order to achieve such
dynamics for � we introduced an ad hoc gradient dynamics that was going in the
direction of solving the linear equation for the �.

6 Conclusions

This paper proposes a novel formulation of learning by differential equations
instead of by the dominating approach of using finite-dimensional optimization.
This can be traced back many contributions that early appeared at the of the
eighties (see e.g. [3] and [4]), as well as from the recent trend of emphasizing
continuous-based computational models of learning (see e.g. [5]4. The distinctive
view proposed in this paper consists of the close parallel with mechanics, that
arises from the general principle of formulating variational laws of nature. The
STLP computational scheme possesses the distinctive feature of being local in
both space and time. Moreover, the gained space locality property goes beyond the
classic local neural communication required for computing the gradient. Unlike
BP, there is no need to synchronize the forward and backward step that return
the factors of the gradient, since they are locally available. The theory nicely
addresses classic arguments on BP biologically plausibility [10], and opens the
doors to an in-depth reformulation of learning algorithms for both feedforward
and recurrent neural networks.
4 Best student paper awards at NeurIPS 2018.
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6 Dynamical constraints

Till this moment we have considered, to model both FNN and RNN holonomic
constraints that impose an instantaneous relations between the variable of the
problem. Indeed constraints like those of Eq. (10) imply an infinite velocity of
diffusion of information.

Since we are stressing the importance of time in learning processes it there-
fore comes natural to define assume that, instead, the velocity of diffusion of
information through a network is finite. In a time discrete scenario this basically
means that the computations of the state x at time t must be computed in terms
of the states at temporal instant t� 1 namely
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A simple translation of this constraint in continuous time can be taken to be
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In stationary situation indeed Eq. (32) coincide with the usual neuron equation
in Eq. (10).

From a mathematical point of view, however this is a much more complicated
constraint, since not only it involves the variables x and w, but also their
derivatives. Such constraints are called nonholonomic constraints.

We will now show how to write the stationarity conditions of the functional

A (x,W ) =

Z ⇣
m

x

2
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making use of the rule of the Lagrange multipliers. As usual we consider the
stationary points of the functional
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ẋ
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If, as we did before, we assume that F (t, x,W ) = �V (t, x), $(t) = e
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ẋ

i

(t) + cx

i

(t)� �(w

ik

(t)x

k

(t)) = 0;

�m

W

¨

W (t)�m

W

#

˙

W (t) + �

j

G

j

M

(t, x(t),W (t), ẋ(t)) = 0;
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This systems of equations can be better interpreted in the limit in which we
recovered the backprop rule in Section 4; that is to say in the limit m
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⇠

(t, x(t)).

In this form we can indeed appreciate the crucial difference of this dynamical
theory with respect to the theory we have defined using holonomic constraints: The
equation that defines the Lagrange multipliers � is now a differential equation that
explicitly gives us the correct updating rule instead of a instantaneous equation
that must be solved for each t. In the previous section in order to achieve such
dynamics for � we introduced an ad hoc gradient dynamics that was going in the
direction of solving the linear equation for the �.

6 Conclusions

This paper proposes a novel formulation of learning by differential equations
instead of by the dominating approach of using finite-dimensional optimization.
This can be traced back many contributions that early appeared at the of the
eighties (see e.g. [3] and [4]), as well as from the recent trend of emphasizing
continuous-based computational models of learning (see e.g. [5]4. The distinctive
view proposed in this paper consists of the close parallel with mechanics, that
arises from the general principle of formulating variational laws of nature. The
STLP computational scheme possesses the distinctive feature of being local in
both space and time. Moreover, the gained space locality property goes beyond the
classic local neural communication required for computing the gradient. Unlike
BP, there is no need to synchronize the forward and backward step that return
the factors of the gradient, since they are locally available. The theory nicely
addresses classic arguments on BP biologically plausibility [10], and opens the
doors to an in-depth reformulation of learning algorithms for both feedforward
and recurrent neural networks.
4 Best student paper awards at NeurIPS 2018.
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Fig. 1. Forward and backward wave on a ten-level network when the input and the

supervision is kept constant.

feedback weights can support error backpropagation. However, any interpreta-
tion which neglects the role of time might not fully capture the essence of bio-
logical plausibility. The intriguing marriage between energy-based models with
object functions for supervision that gives rise to Equilibrium Propagation [11]
seems to be better suited to capture the role of time. Based on a full trust on
the tole of temporal evolution, in [1], the authors proposed the formulation of
learning under the framework of laws of nature derived from variational prin-
ciples. This paper springs out from recent studies especially on the problem of
learning visual features [4, 5, 2] and it was also stimulated by a nice analysis on
the interpretation of Newtonian mechanics equations in the variational frame-
work [9].

This paper shows that when looking for laws of learning more than from
learning algorithms, one can clearly see the emergence of the biological plau-
sibility of Backprop, an issue that has been controversial since its spectacular
impact. We claim that the algorithm does represent a sort of degenerate pro-
cess of a natural spatiotemporal di↵usion process that can clearly be understood
when thinking of perceptual tasks, like speech and vision, where signals possess
smooth properties. In those tasks, instead of performing the forward-backward
scheme for any frame, one can properly spread the weight update according to a
di↵usion scheme. While this is quite an obvious remark on parallel computation,
the disclosure of the degenerate di↵usion scheme behind Backprop, sheds light on
its biological plausibility. This is especially important at the light of recent dis-
coveries on the underlining di↵usion process that characterizes neural networks
with any pattern of interconnections, including cyclic links [3]. The learning pro-
cess that emerges in this framework is based on complex di↵usion waves that,
however, is dramatically simplified under the feedforward assumption, where the
propagation is split into forward and backward waves.

Forward and Backward Waves

BP diffusion is biologically plausible

BP algorithm is NOT biologically plausible



• GNN: Success due to convolutional graphs, but  the 
“diffusion path” is still worth exploring

• What happens with deep networks in graph compiling?

• Laws of learning, pre-algorithmic issues, and biological 
plausibility

• Dynamic models for Lagrangian multipliers (always delta-
error): new perspective whenever time-coherence does 
matter!

• Euler-Lagrangian Learning and SGD

Conclusions

PRELIMINARY EXPERIMENTAL CHECK
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