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‣ E.g., antibiotic (cephalosporin)

Why are molecules interesting for ML?

3D information

node labels substructures 
(motifs)

Together give rise to various chemical properties 
(e.g., solubility, toxicity, …)

edge labels

https://en.wikipedia.org/wiki/Cephalosporin


Why are molecules interesting for ML?
‣ Properties may depend on intricate structures;  
‣ The key challenges are to automatically predict chemical properties and to 

generate molecules with desirable characteristics

(Daptomycin antibiotic)



Interesting ML Problems
‣ Deeper into known chemistry 

- extract chemical knowledge from journals, notebooks                            (NLP) 

‣ Deeper into drug design 
- molecular property prediction                                      (graph representation) 
- (multi-criteria) lead optimization                                       (graph generation) 

‣ Deeper into reactions 
- forward reaction prediction                                          (structured prediction) 
- forward reaction optimization                              (combinatorial optimization) 

‣ Deeper into synthesis 
- retrosynthesis planning                                            (reinforcement learning)
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Automating Drug design

‣ Key challenges:  

1. representation and prediction: learn to predict molecular properties  

2. generation and optimization: realize target molecules with better 
properties programmatically 

3. understanding: uncover principles (or diagnose errors) underlying complex 
predictions



GNNs for property prediction?
‣ Are GNN models operating on molecular graphs sufficiently expressive for 

predicting molecular properties (in the presence of “property cliffs”)?  

‣ A number of recent results pertaining to the power of GNNs (e.g., Xu et al. 
2018, Sato et al. 2019, Maron et al., 2019, …);

solubility, 
toxicity, 

bioactivity, 
etc.

GNN embedding aggregation prediction



Are basic GNNs sufficiently expressive?
‣ Theorem [Garg et al., 2019]: GNNs with permutation invariant readout 

functions cannot “decide” 
- girth (length of the shortest cycle) 
- circumference (length of the longest cycle) 
- diameter, radius 
- presence of conjoint cycle 
- total number of cycles 
- presence of c-clique 
- etc. (?) 

‣ (most results also apply to MPNNs)
property



Beyond simple GNNs: sub-structures
‣ Learning to view molecules at multiple levels [Jin et al., 2019]

1. original molecular 
graph

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola
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‣ Learning to view molecules at multiple levels

1. original molecular 
graph
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‣ Learning to view molecules at multiple levels

1. original molecular 
graph

Beyond simple GNNs: sub-structures

3. substructure 
graph

2. substructure graph 
with attachments
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Multi-resolution representations
‣ Learning to view molecules at multiple levels

1. original molecular 
graph

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola

3. substructure 
graph

2. substructure graph 
with attachments

‣ Related to graph-pooling 
(Ying et al., 2018, …)

Hierarchical message 
passing



Experiments on solubility
‣ ESOL dataset (averaged over 5 folds)
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GNN with features 
‣ atom type label  
‣ degree  
‣ valence 
‣ whether an atom is in a cycle 
‣ whether an atom is in an aromatic ring 
‣ ……

Cycle 
information



Experiments on solubility
‣ ESOL dataset (averaged over 5 folds)

ESOL RMSE

0.5

0.675

0.85

1.025

1.2

GNN GNN-Feature HierGNN

0.65
0.69

1.11

Hierarchical GNN 
‣ Atom features: still just atom type 
‣ But has extra substructure information built 

into the architecture



New Antibiotic Discovery
‣ If we can accurately predict molecular properties, we can screen (select and 

repurpose) molecules from a large candidate set 
 
 
 
 

‣ Antibiotic Discovery [Stokes et al., 2019] 
- Trained a model to predict the inhibition against E. Coli (some bacteria…) 
- Data: ~2000 measured compounds from Broad Institute at MIT 
- Screened in total ~100 million compounds 
- Biologists tested 15 molecules (top prediction, structurally diverse) in the lab  
- 7 of them are validated to be inhibitive in-vitro 
- 1 of them demonstrate strong inhibition against other bacteria (e.g., A. baumannii) 
- All of them are new antibiotics distinct from existing ones!

…

Learning to Discover Novel Antibiotics from Vast Chemical Spaces (2019), J. Stokes, K. Yang, K. Swanson, W. Jin, R. Barzilay, T. Jaakkola et al.



Automating Drug design

‣ Key challenges:  

1. representation and prediction: learn to predict molecular properties  

2. generation and optimization: realize target molecules with better 
properties programmatically 

3. understanding: uncover principles (or diagnose errors) underlying complex 
predictions
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‣ Goal: We aim to programmatically turn precursor molecules into molecules that 
satisfy given design specifications

De novo molecule optimization

‣ Similar but … 
‣ Better drug-likeness

‣ Similar but … 
‣ Better solubility

‣ Need to learn a molecule-to-molecule mapping (i.e., graph-to-graph) 
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‣ Goal: We aim to programmatically turn precursor molecules into molecules that 
satisfy given design specifications 

‣ The training set consists of (source, target) molecular pairs, e.g., 

‣ Key challenges: graph generation, diversity, multi-criteria optimization 

Molecule optimization as Graph Translation

… …

Source Target

…
…

…
Encode Decode

X YSource Target



Graph-to-Graph Translation (Decoder)
‣ Modifying a pre-cursor to meet target specifications

…
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Hierarchical GNN Encoder 
(more expressive power)

Source  
vectors

Hierarchical Graph Decoder 
(reverse of encoding process)



‣ Modifying a pre-cursor to meet target specifications

Graph-to-Graph Translation (Decoder)
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‣ Modifying a pre-cursor to meet target specifications

Graph-to-Graph Translation (Decoder)

…
…

target 
specs+

S

…

…

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola

a dictionary of substructures



‣ Modifying a pre-cursor to meet target specifications

Graph-to-Graph Translation (Decoder)
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‣ Modifying a pre-cursor to meet target specifications

Graph-to-Graph Translation (Decoder)
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Expand the  
substructure graph



‣ Modifying a pre-cursor to meet target specifications

Graph-to-Graph Translation (Decoder)
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Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola

How to attach them?

?

?

Substructures are still 
“disconnected”
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‣ Modifying a pre-cursor to meet target specifications

Graph-to-Graph Translation (Decoder)

…
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target 
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…

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola

Predict attaching points 
in the neighbor substructure

?



‣ Modifying a pre-cursor to meet target specifications

Graph-to-Graph Translation (Decoder)

…
…

target 
specs+

…

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola
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‣ Modifying a pre-cursor to meet target specifications

Graph-to-Graph Translation (Decoder)

…
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target 
specs+
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Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola

Update atom / substructure 
representations



‣ Modifying a pre-cursor to meet target specifications

…
…

target 
specs+

Graph-to-Graph Translation (Decoder)

…

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



De novo molecule optimization: diversity
‣ Goal: We aim to programmatically turn precursor molecules into versions that 

satisfy given design specifications

X Y
diversity z ~ P(z)
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…
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De novo molecule optimization: specs
‣ Goal: We aim to programmatically turn precursor molecules into versions that 

satisfy given design specifications
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De novo molecule optimization: specs
‣ Goal: We aim to programmatically turn precursor molecules into versions that 

satisfy given design specifications

X Y
diversity z ~ P(z)

design specs g 
(e.g., drug-like & DRD2 inactive)

…
…

…
Encode Decode

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola
Target 2

Target 1

Input X

g



Example results (DRD2)
‣ Single property optimization: DRD2 success % (from inactive to active)
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Example results (drug-likeness)
‣ Single property optimization: drug-likeness (QED) success % (QED > 0.9)
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32.9
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Example results (multiple design specs)
‣ Multi-criteria success % (design specs driven generation) 

‣ Challenge: only 1.6% training pairs are both drug-like and DRD2-active
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Disentangling what’s important
‣ Models are complicated, important to assess how individual parts contribute to 

performance

Under review as a conference paper at ICLR 2020

Table 2: Results on conditional optimization tasks and ablation studies over architecture choices.
(a) Conditional optimization results: g = [1, ⇤] means the
output Y needs to be drug-like and g = [⇤, 1] means it
needs to be DRD2-active.

Method g = [1, 1] g = [1, 0]

Succ. Div. Succ. Div.
Seq2Seq 5.0% 0.078 67.8% 0.380
JTNN 11.1% 0.064 71.4% 0.405
AtomG2G 12.5% 0.031 74.5% 0.443
HierG2G 13.0% 0.094 78.5% 0.480

(b) Ablation study: the importance of hierarchi-
cal graph encoding, LSTM MPN architecture and
structure-based decoding.

Method QED DRD2
HierG2G 76.9% 85.9%
· atom-based decoder 76.1% 75.0%
· two-layer encoder 75.8% 83.5%
· one-layer encoder 67.8% 74.1%
· GRU MPN 72.6% 83.7%

Figure 5: Illustration of conditional translation. Our model generates different molecules when the
translation criteria changes. When g = [1, 1], the model indeed generates a compound with high
QED and DRD2 scores. When g = [1, 0], the model predicts another compound inactive to DRD2.

Conditional Optimization For this task, we compare our method with other translation methods:
Seq2Seq, JTNN and AtomG2G. All these models are trained under the conditional translation setup
where feed the desired criteria gX,Y as input. As shown in Table 2a, our model outperforms other
models in both translation accuracy and output diversity. Notably, all models achieved very low
success rate on c = [1, 1] because it has the strongest constraints and only 1.6K of the training pairs
satisfy this criteria. In fact, training our model on the 1.6K examples only gives 4.2% success rate as
compared to 13.0% when trained with other pairs. This shows our conditional translation setup can
transfer the knowledge from other pairs with gX,Y = [1, 0], [0, 1]. Figure 5 illustrates how the input
criteria g affects the generated output.

Ablation Study To understand the importance of different architecture choices, we report ablation
studies over the QED and DRD2 tasks in Table 2b. We first replace our hierarchical decoder with
atom-based decoder of AtomG2G to see how much the structure-based decoding benefits us. We keep
the same hierarchical encoder but modified the input of the decoder attention to include both atom
and substructure vectors. Using this setup, the model performance decreases by 0.8% and 10.9%
on the two tasks. We suspect the DRD2 task benefits more from structure-based decoding because
biological target binding often depends on the presence of specific functional groups.

Our second experiment reduces the number of hierarchies in our encoder and decoder MPN, while
keeping the same hierarchical decoding process. When the top substructure layer is removed, the
translation accuracy drops slightly by 0.8% and 2.4%. When we further remove the attachment
layer, the performance degrades significantly on both datasets. This is because all the substructure
information is lost and the model needs to infer what substructures are and how substructure layers are
constructed for each molecule. Implementation details of those ablations are shown in the appendix.

Lastly, we replaced our LSTM MPN with the original GRU MPN used in JTNN. While the translation
performance decreased by 4% and 2.2%, our method still outperforms JTNN by a wide margin.
Therefore we use the LSTM MPN architecture for both HierG2G and AtomG2G baseline.

5 CONCLUSION

In this paper, we developed a hierarchical graph-to-graph translation model that generates molecular
graphs using chemical substructures as building blocks. In contrast to previous work, our model is
fully autoregressive and learns coherent multi-resolution representations. The experimental results
show that our method outperforms previous models under various settings.

8
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Still many ways to improve
‣ Generating complex objects (e.g., molecules) is hard 
‣ Assessing the quality of the object (property prediction) is substantially easier
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‣ Generating complex objects (e.g., molecules) is hard 
‣ Assessing the quality of the object (property prediction) is substantially easier 

‣ Target augmentation: we can use property predictor to generate additional 
(self-supervised) data for the generative model

Property-guided generation

Iterative Target Augmentation for Effective Conditional Generation (2019). K. Yang, W. Jin, K. Swanson, R. Barzilay, and T. Jaakkola
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Target augmentation = stochastic EM
‣ Objective: maximize the log-probability that generated candidates satisfy the 

properties of interest (structure is now a latent variable) 

‣ E-step: generate candidates from the current model; filter/reweight  
by property predictor (~ posterior samples) 

‣ M-step: maximize the log-probability 
of new (weighted) targets

X

X2source set

log

X

Y

P (target specs|Y )P (Y |X; ✓)

�
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Target augmentation = stochastic EM
‣ Objective: maximize the log-probability that generated candidates satisfy the 

properties of interest (structure is now a latent variable) 

‣ E-step: generate candidates from the current model; filter/reweight  
by property predictor (~ posterior samples) 
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Example results: gains
‣ Substantial gains in translation/optimization success %
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Example results: gains
‣ Consistently improving …
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Example results: robustness
‣ The gains are robust against errors in the property predictor 

‣ Note: curves are for a weaker seq2seq model; baseline performance is much lower, but final 
performance with augmentation comparable to hierG2G.

Under review as a conference paper at ICLR 2020
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Figure 3: Left: QED success rate vs. Chemprop predictor’s RMSE with respect to ground truth
on test set. The red line shows the performance of the (unaugmented) VSeq2Seq baseline. Right:
Same plot for DRD2. In each plot, the far left point with zero RMSE is obtained by reusing the
ground truth predictor, while the second-from-left point is the Chemprop predictor we use to obtain
our main results. Points further to the right are weaker predictors trained for fewer epochs and with
less capacity, simulating a scenario where the property is more difficult to model.

Model Train Test QED Succ. QED Div. DRD2 Succ. DRD2 Div.
VSeq2Seq 7 7 58.5 0.331 75.9 0.176
VSeq2Seq(test) 7 3 77.4 0.471 87.2 0.200
VSeq2Seq(train) 3 7 81.8 0.430 92.2 0.321
VSeq2Seq+ 3 3 89.0 0.470 97.2 0.361

VSeq2Seq(no-filter) 7 7 47.5 0.297 51.0 0.185

Table 2: Ablation analysis of filtering at training and test time. “Train” indicates a model whose
training process uses data augmentation according to our framework. “Test” indicates a model that
uses the external filter at prediction time to discard candidate outputs which fail to pass the filter. The
evaluation for VSeq2Seq(no-filter) is conducted after 10 augmentation epochs, as the best validation
set performance only decreases over the course of training.

Importance of External Filtering Our full model (VSeq2Seq+) uses the external filter during both
training and testing. We further experiment with Vseq2seq(test), a version of our model trained
without data augmentation but which uses the external filter to remove invalid outputs at test time.
As shown in Table 2, VSeq2Seq(test) performs significantly worse than our full model trained under
data augmentation. Similarly, a model VSeq2Seq(train) trained with the data augmentation but
without the prediction time filtering also performs much worse than the full model.

In addition, we run an augmentation-only version of the model without an external filter. This model
(referred to as VSeq2Seq(no-filter) in Table 2) augments the data in each epoch by simply using the
first K distinct candidate translations for each precursor X in the training set, without using the
external filter at all. In addition, we provide this model with the 100K unlabeled precursors from the
semi-supervised setting. Nevertheless, we find that the performance of this model steadily declines
from that of the bootstrapped starting point with each data augmentation epoch. Thus the external
filter is necessary to prevent poor targets from leading the model training astray.

5.2 PROGRAM SYNTHESIS

In program synthesis, the source is a set of input-output specifications for the program, and the target
is a program that passes all test cases. Our method is suitable for this task because the target program
is not unique. Multiple programs may be consistent with the given input-output specifications. The
external filter is straightforward for this task: we simply check whether the generated output passes
all test cases. Note that at evaluation time, each instance contains extra held-out input-output test
cases; the program must pass these in addition to the given test cases in order to be considered
correct. When we perform prediction time filtering, we do not use held-out test cases in our filter.
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Summary
‣ Molecules as structured objects provide a rich domain for developing ML tools; 

key underlying challenges shared with other areas involving generation/
manipulation of diverse objects 

‣ ML molecular design methods are rapidly becoming viable tools for drug 
discovery 

‣ Several key challenges remain, however:  
- effective multi-criteria optimization 
- incorporating 3D features, physical constraints 
- generalizing to new, unexplored chemical spaces (domain transfer) 
- explainability, etc.


