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Why are molecules interesting for ML?

» E.qg., antibiotic (cephalosporin)

node labels edge labels substructures

(motifs)

3D information



https://en.wikipedia.org/wiki/Cephalosporin

Why are molecules interesting for ML?

» E.qg., antibiotic (cephalosporin)
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Together give rise to various chemical properties
(e.qg., solubility, toxicity, ...)


https://en.wikipedia.org/wiki/Cephalosporin

Why are molecules interesting for ML?

» Properties may depend on intricate structures;

» The key challenges are to automatically predict chemical properties and to
generate molecules with desirable characteristics
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» Deeper into khown chemistry
- extract chemical knowledge from journals, notebooks (NLP)

» Deeper into drug design
- molecular property prediction (graph representation)
- (multi-criteria) lead optimization (graph generation)

» Deeper into reactions
- forward reaction prediction (structured prediction)
- forward reaction optimization (combinatorial optimization)

» Deeper Into synthesis
- retrosynthesis planning (reinforcement learning)
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Automating Drug design

» Key challenges:

1. representation and prediction: learn to predict molecular properties

2. generation and optimization: realize target molecules with better
properties programmatically

3. understanding: uncover principles (or diagnose errors) underlying complex
predictions



GNNs for property prediction?

» Are GNN models operating on molecular graphs sufficiently expressive for
predicting molecular properties (in the presence of “property cliffs”)?

! solubility,
— toxicity,
n bioactivity,
etc.

GNN embedding aggregation prediction

» A number of recent results pertaining to the power of GNNs (e.g., Xu et al.
2018, Sato et al. 2019, Maron et al., 2019, ...);



Are basic GNNs sufficiently expressive?

» Theorem [Garg et al., 2019]: GNNs with permutation invariant readout
functions cannot “decide”

- girth (length of the shortest cycle)

- circumference (length of the longest cycle)
- diameter, radius

- presence of conjoint cycle

- total number of cycles

- presence of c-clique

- etc. (?)

» (most results also apply to MPNNSs)

property



Beyond simple GNNs: sub-structures

» Learning to view molecules at multiple levels [Jin et al., 2019]
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Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola
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Beyond simple GNNs: sub-structures

» Learning to view molecules at multiple levels
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Beyond simple GNNs: sub-structures

» Learning to view molecules at multiple levels
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Beyond simple GNNs: sub-structures

» Learning to view molecules at multiple levels

Propagate atom
embeddings

H Q 1. original molecular
(N graph

2. substructure graph
with attachments

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Beyond simple GNNs: sub-structures

» Learning to view molecules at multiple levels Rt
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Multi-resolution representations

» Learning to view molecules at multiple levels H /“/ H

”¢‘ S 'g‘ /
| | -' P 3. substructure
Hierarchical message ,~ graph

passing

———

2. substructure graph
with attachments
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E Q ) 1. original molecular » Related to graph-pooling
e graph (Ying et al., 2018, ...)

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Experiments on solubility

» ESOL dataset (averaged over 5 folds)

ESOL RMSE

GNN GNN-Feature
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Experiments on solubility

» ESOL dataset (averaged over 5 folds)

ESOL RMSE ~ Raw GNN
» atom feature: only atom type label

GNN with features

/ » atom type label

» degree

» valence Cycle

» whether an atom is in a cycle information

» whether an atom is in an aromatic ring

GNN GNN-Feature



Experiments on solubility

» ESOL dataset (averaged over 5 folds)

ESOL RMSE

Hierarchical GNN

» Atom features: still just atom type

» But has extra substructure information built
into the architecture

GNN GNN-Feature HierGNN



New Antibiotic Discovery

» If we can accurately predict molecular properties, we can screen (select and
repurpose) molecules from a large candidate set
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» Antibiotic Discovery [Stokes et al., 2019]
- Trained a model to predict the inhibition against E. Coli (some bacteria...)
- Data: ~2000 measured compounds from Broad Institute at MIT
- Screened in total ~100 million compounds
- Biologists tested 15 molecules (top prediction, structurally diverse) in the lab
- /7 of them are validated to be inhibitive in-vitro
- 1 of them demonstrate strong inhibition against other bacteria (e.g., A. baumannii)
- All of them are new antibiotics distinct from existing ones!

Learning to Discover Novel Antibiotics from Vast Chemical Spaces (2019), J. Stokes, K. Yang, K. Swanson, W. Jin, R. Barzilay, T. Jaakkola et al.



Automating Drug design

» Key challenges:

1. representation and prediction: learn to predict molecular properties

2. generation and optimization: realize target molecules with better
properties programmatically

3. understanding: uncover principles (or diagnose errors) underlying complex
predictions



De novo molecule optimization

» Goal: We aim to programmatically turn precursor molecules into molecules that
satisfy given design specifications
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De novo molecule optimization

» Goal: We aim to programmatically turn precursor molecules into molecules that
satisfy given design specifications
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» Need to learn a molecule-to-molecule mapping (i.e., graph-to-graph)




Molecule optimization as Graph Translation

» Goal: We aim to programmatically turn precursor molecules into molecules that
satisfy given design specifications
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Molecule optimization as Graph Translation

» Goal: We aim to programmatically turn precursor molecules into molecules that
satisfy given design specifications
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» The training set consists of (source, target) molecular pairs, e.qg.,
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Molecule optimization as Graph Translation

» Goal: We aim to programmatically turn precursor molecules into molecules that
satisfy given design specifications

O O
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Oy Wy S

» The training set consists of (source, target) molecular pairs, e.qg.,
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» Key challenges: graph generation, diversity, multi-criteria optimization




Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications

HE E Source Hierarchical GNN Encoder

target — .
+ Specs vectors (Mmore expressive power)

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications

HE E Source Hierarchical GNN Encoder

target — .
+ specs vectors (more expressive power)

|

Hierarchical Graph Decoder
(reverse of encoding process)

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications

HE E <©> Substructure
: graph
+ target —
Specs "--.--“
Substructure graph
B : with attachments
Original molecular
graph

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications .-
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications @
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications G
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications @
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Graph-to-Graph Translation (Decoder)
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications G
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications HS
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Graph-to-Graph Translation (Decoder)

» Modifying a pre-cursor to meet target specifications HS -
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De novo molecule optimization: diversity

» Goal: We aim to programmatically turn precursor molecules into versions that
satisfy given design specifications
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Variational inference

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



De novo molecule optimization: diversity

» Goal: We aim to programmatically turn precursor molecules into versions that
satisfy given design specifications
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De novo molecule optimization: specs

» Goal: We aim to programmatically turn precursor molecules into versions that
satisfy given design specifications
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Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



De novo molecule optimization: specs

» Goal: We aim to programmatically turn precursor molecules into versions that
satisfy given design specifications

O
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design specs g
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Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Example results (DRD2)

» Single property optimization: DRD2 success % (from inactive to active)

MMPA Seg2Seq JT-G2G AtomG2G HierG2G

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Example results (DRD2)

» Single property optimization: DRD2 success % (from inactive to active)

hierarchical

node-by-node

40

MMPA Seg2Seq JT-G2G AtomG2G HierG2G
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Example results (drug-likeness)

» Single property optimization: drug-likeness (QED) success % (QED > 0.9)

MMPA Seq2Seq JT-G2G AtomG2G HierG2G

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Example results (multiple design specs)

» Multi-criteria success % (design specs driven generation)

Drug-like and DRD2-active Drug-like but DRD2-inactive

Seq2Seq AtomG2G HierG2G Seq2Seq AtomG2G HierG2G

» Challenge: only 1.6% training pairs are both drug-like and DRD2-active

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Disentangling what’'s important

» Models are complicated, important to assess how individual parts contribute to
performance

Method QED DRD2
HierG2G 76.9% 85.9%
- atom-based decoder 76.1%  75.0%
- two-layer encoder 75.8%  83.5%
- one-layer encoder 67.8% 74.1%
- GRU MPN 72.6%  83.7%

Hierarchical Graph-to-Graph Translation for Molecules (2019). W. Jin, R. Barzilay, and T. Jaakkola



Still many ways to improve

» Generating complex objects (e.g., molecules) is hard
» Assessing the quality of the object (property prediction) is substantially easier

I 0 o ™
Constraints:
©)‘\NH Translate C\ N - Molecular Similarity
@ A/ " A sim(X, Y) > 0.4
N N O N . Drug-likeness QED(Y) > 0.9
\_ ),
hard to easier to

realize check/predict



Property-guided generation

» Generating complex objects (e.g., molecules) is hard
» Assessing the quality of the object (property prediction) is substantially easier

0 0 cometraints A
Constraints:
J@)‘\NH Translate CN N - Molecular Similarity
\@I,\I 6; / 6> sim(X, Y) > 0.4
N N O N . Drug-likeness QED(Y) > 0.9
\_ _/
hard to easier to
realize check/predict

» Target augmentation: we can use property predictor to generate additional
(self-supervised) data for the generative model

Iterative Target Augmentation for Effective Conditional Generation (2019). K. Yang, W. Jin, K. Swanson, R. Barzilay, and T. Jaakkola



Target augmentation = stochastic EM

» Objective: maximize the log-probability that generated candidates satisfy the
properties of interest (structure is now a latent variable)

Z log ZP(target specs|Y )P(Y|X;60)
- Y -

X Esource set

» E-step: generate candidates from the current model; filter/reweight
by property predictor (~ posterior samples)

» M=-step: maximize the log-probability
of new (weighted) targets

Iterative Target Augmentation for Effective Conditional Generation (2019). K. Yang, W. Jin, K. Swanson, R. Barzilay, and T. Jaakkola
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Target augmentation = stochastic EM

» Objective: maximize the log-probability that generated candidates satisfy the
properties of interest (structure is now a latent variable)
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Target augmentation = stochastic EM

» Objective: maximize the log-probability that generated candidates satisfy the
properties of interest (structure is now a latent variable)

Z log ZP(target specs|Y )P(Y|X;60)
- Y -

X Esource set

» E-step: generate candidates from the current model; filter/reweight

by property predictor (~ posterior samples)
)
of v

» M=-step: maximize the log-probability
of new (weighted) targets

@\ DRD2=0.933
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b x
F
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Iterative Target Augmentation for Effective Conditional Generation (2019). K. Yang, W. Jin, K. Swanson, R. Barzilay, and T. Jaakkola



Example results: gains

» Substantial gains in translation/optimization success %

QED Success DRD2 Success

HierG2G HierG2G++ HierG2G HierG2G++

Iterative Target Augmentation for Effective Conditional Generation (2019). K. Yang, W. Jin, K. Swanson, R. Barzilay, and T. Jaakkola



Example results: gains

» Consistently improving ...

HierG2G Validation Set Performance

Success Rate

80

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
lteration

Iterative Target Augmentation for Effective Conditional Generation (2019). K. Yang, W. Jin, K. Swanson, R. Barzilay, and T. Jaakkola



Example results: robustness

» The gains are robust against errors in the property predictor

| | with augmentation
100 —withraugmentation 100 ————& Te

w /5 9 /5 :
& ® w/0 augmentation
: | :
= >0 | w/oaugmentation 2 20
o 25 S 95
o &

0 0

0 0.02 0.04 0.06 0.08 0 0.1 0.2 0.3 04
Predictor RMSE Predictor RMSE

» Note: curves are for a weaker seg2seq model; baseline performance is much lower, but final
performance with augmentation comparable to hierG2G.

Iterative Target Augmentation for Effective Conditional Generation (2019). K. Yang, W. Jin, K. Swanson, R. Barzilay, and T. Jaakkola



» Molecules as structured objects provide a rich domain for developing ML tools;
key underlying challenges shared with other areas involving generation/
manipulation of diverse objects

» ML molecular design methods are rapidly becoming viable tools for drug
discovery

» Several key challenges remain, however:
- effective multi-criteria optimization
- incorporating 3D features, physical constraints
- generalizing to new, unexplored chemical spaces (domain transfer)
- explainability, etc.



